칼럼1) 알아두면 쓸데있는 다항함수 적분공식 총정리
게시글 주소: https://hpi.orbi.kr/00061780620
제 첫 번째 칼럼 주제는 다항함수 적분공식 총정리입니다.
적분공식들은 계산을 훨씬 가볍게 해주고, 빠르게 점검할 수 있어서 검토용으로 쓰기에도 좋습니다.
사실 다항함수 적분 공식은 엄청나게 많습니다. 하지만 그걸 다 알 필요는 전혀 없습니다. 실전에서 쓸만한 공식 몇 가지만 체크하고 넘어가면 됩니다.
이미 아는 게 나왔다면 '아 맞아 이런게 있지~' 생각하며 복습차 확인해주시고, 처음 보는게 나온다면 '이런게 있구나 알아둬야겠네' 생각하며 읽어가시면 됩니다.
1. 이차함수
너무 유명한 공식이죠. 인지해야 할 점이 딱 두 개 있습니다.
1) 둘러싸인 넓이는 오직 x좌표 차이에만 관련이 있다!
2) 색칠한 넓이가 반띵이 되는 곳은 이차함수의 축이 아니라 알파와 베타의 중점 부분입니다. 당연한 내용인데, 가끔씩 실수가 나오기도 하므로 유의하세요.
한편, 공식은 아니지만 알아두면 정말 많이 쓰는 이차함수 넓이 관계가 두 가지 있습니다.
1) 위 경우처럼 길이비가 각각 2:1일 때 초록 부분과 파란 부분의 넓이가 같습니다. 이는 해당 적분 구간의 적분값이 0임을 의미하기도 합니다. (초록과 파란 부분의 넓이는 같은데 부호가 반대니까요.)
이는 삼차함수의 2:1 관계와 관련이 있습니다. (이 말은 이해가 안 되시면 그냥 넘어가셔도 좋아요.)
2) 위와 같이 초록색 적분구간이 이차함수의 축에서 시작할 때, 길이비가 그림처럼 1:루트3으로 만들어진다면 초록 부분과 파란 부분의 넓이가 같습니다. 이는 삼차함수의 1:루트3 관계와 관련이 있습니다.
두 경우 모두 이차함수의 최고차항 계수와 관계 없이 성립합니다.
2. 삼차함수
두 가지가 있습니다. 첫 번째는 매우 유명한 상황이죠. 직선 대신 이차함수인 경우에도 똑같이 성립합니다. (삼차함수와 이차함수가 알파에서 한 번 만나고 베타에서 접하는 경우라면 말이죠.)
이와 연관지어 생각해볼 만한 관계가 있는데요,
위 그림처럼 X좌표 길이 비가 1:3이 될 때, 초록 부분 넓이와 파란 부분 넓이가 같습니다. 사차함수의 3:1 관계와 관련이 있습니다.
두 번째가 굉장히 유용한 공식인데 의외로 잘 알려지지 않았습니다. 변곡점을 지나는 직선과, 삼차함수로 둘러쌓인 한 쪽 넓이가 다음과 같습니다. 두 쪽은 거기에 2까지 곱해주면 되겠죠. 양쪽 부분이 넓이가 같을테니까요.
3. 사차함수
역시 두 가지입니다. 솔직히 말해 이 두 공식은 요즘 평가원에선 보실 일이 없을거고(과거에는 나온 적이 있긴 합니다.) 사설이나 내신에 유용할 듯 하네요. 넣을까 말까 고민을 했으나 아는 사람은 다 안다는 공식이라 넣었습니다.
경험상 '둘 중에 뭐가 1/30이었지??!' 하면서 맨날 헷갈리는데, 공통접선 놈이 1/30이라고 확실히 알아둡시다.
4. y=xn 꼴
앞선 3개에 비하면 거의 안쓰이고, 솔직히 몰라도 됩니다만 그래도 소개해드려봅니다.
초록 넓이 : 노란 넓이 = n : 1
(각 직선들은 축에 평행하게 그려져야 하고, 최고차항 계수가 1이 아니어도 성립합니다.)
모든 n차 다항함수에 대해서 성립하지만, 사실상 수능에서는 이차함수의 경우에만 유용합니다. 삼차부터는 저도 써본 적이 없어요.
일차함수 넓이 구할 때 적분하지 않잖아요? 비슷한 느낌으로 이 공식을 알면 이차함수의 경우에는 많은 경우에 적분을 할 필요가 없어요. 모든 이차함수는 곡면아래 넓이를 저런 식으로 도출해 낼 수 있기 때문이죠.
이차함수의 경우 위 상황에서 초록부분과 노란 부분의 넓이비는 2:1이며, 이를 다음과 같이 인식할 수도 있습니다.
표시한 전체 직사각형의 넓이 x 1/3 = 곡면 아래넓이
예를 들어보겠습니다.
위 경우에서 1에서 2까지 이차함수의 적분값을 구하는 상황입니다. 첫 번째로 할 일은
표시한 부분의 직사각형을 보며, 직사각형의 넓이가 2이기 때문에 곡면 아래 넓이는 1/3 배인 2/3임을 구하는 겁니다.
그래서 색칠한 빨간 부분의 넓이는 2/3이고, 적분값은 노란 영역의 넓이인 1까지 더해줘야 하므로 답은 5/3입니다.
이와 같이 접근하면, 이차함수 적분 문제에서 적분 구간이 축을 포함하는 상황은 전부 빠르게 처리할 수 있습니다. 최고차항 계수가 1이 아닐 때도 당연히 성립합니다. 다만, 이차함수의 적분 구간이 축을 포함하지 않는다면, 대체로 그냥 적분하시는게 더 빠를 겁니다.
한편, 다음과 같은 오해를 하여 삼차함수에서 이를 쓰려고 하시는 분들도 가끔 있습니다.
"이 경우엔 3:1 ?"
은 절대 아닙니다. y=xn 꼴에서만 사용할 수 있는데, 위 상황은 그런 꼴이 아니기 때문입니다.
그런데 y=x3꼴의 적분을 묻는 경우는 거의 없잖아요? 그래서 앞서 말했듯이 삼차 이상부터는 거의 쓸 일이 없습니다.
제가 준비한 공식은 여기까지입니다. 소개드린 공식 외의 것들은 좀 과한 느낌이 있습니다.
한편 공식이 전부 '몇 분의 (b-a)의 몇 승' 느낌으로 생겼는데요, '몇 분의'에 해당하는 부분은 암기구요 '몇 승'은 쉽게 기억하실 수 있습니다. n차함수에 대해 n+1이 지수 자리로 가기 때문이죠.
칼럼은 여기까지입니다. 감사합니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
지금부로 아이민 1231053 을 최고 옯창으로 정의함 0
글 9300개글당 조회수 150정도덕코 총 가치합 1040만
-
좀 멋있고 chill하게 살면 좋아해줌? 춤 멋있게 잘추고 노래잘부르고 기타잘치고...
-
LPF9MMU 에메해서 울었어.
-
무슨 알바하시나여..?
-
재종반이 아니라 단과 들으면서 부엉이 이용 가능한가요?
-
학생들이 옆에서 공부얘기하는데 ㅈㄴ 끼고 싶다
-
아싸ㅇㅈ 6
-
질서도 안 지킨 놈들이 이제는 질서를 세우네
-
표점 구하기 너무 빡세서 설대식 최고 점수 기준으로 할 거임
-
원래 물1 지1 할랬는데 물1이 자신 있는 과목이 아니라서 계속 가져가야할지...
-
자퇴 D-4 0
생각이많아지네요...
-
마마마맞팔구 4
저는 동테에서 벗어나고 싶어요
-
화2는 내 순수 피지컬로 카피바라 키우기 하는 느낌이고 생2는 테트리스 하는 느낌
-
아제발 히터좀 잘틀어주면 안되냐 개춥다 해도 틀고 한시간 후에 끄고 아 ㅈㅂ 심지어...
-
올해 25수능 난이도 그대로 나오면 만백 96도 뜰수 있다. 24수능으로 나오면...
-
니가 와서 대답해봐 쓰는글이 똑같네 투표 도배하는것도그렇고
-
솔직히 25수능 1컷 45에 만백 99인것도 다른 투에 비해(적어도 물2에 비해선)...
-
여기 선호도가 어떻게 되나요? 국문 영문 이런데 보다 높나요 아시는분
-
안녕하세요 (글이 너무 길어서 재업합니다) 현역때 수능 말아먹고 재수때문에...
-
님들은 짝사랑 해봤나요 11
기간이 얼마나 되나요
-
내일 밥먹으면서 보기 위해..
-
닉변하고 21
레어떼고 에피떼고 뱃지떼고 프사떼고 글밀고
-
대학가서 열심히 살아서 성공해야겠다. . . "내일은 내일의 태양이 뜨는법이니까"
-
총 글쓴수 덕코 + 레어의 가치 합 도합 조회수 등등 평가원식 표준점수로 매긴다음...
-
시대 0
전화 해봤는데 내일 나온다네요~
-
다른나라와 비교했을때 수준이 어떨까요???
-
막판 야미
-
생2러분들 7
호옥시 잠깐 시간 되시면 요정도로 해설 작성했을 때 이해가 될 법한지 한 번만...
-
여캐투척 1
-
재밌었어 8
담에 또하자
-
롤체할사람 2
다이아찍기프로젝트
-
... 9
-
국정원 기밀문서 0
국정원 기출 있으면 에필로그 안 사도 되나 고전소설 양치기만 사도 될거 같다는 생각이 듭니다
-
한번 가 보고 싶긴 한데 이미 2년 휴학했는데 1년 더 녹아버릴까봐 엄두를 못 내겠네요,,
-
잘못해서 오르비에 저격당하거나 메인글에서 욕먹고있으면 수험생활 쉽지 않을 듯
-
3평 1번 6평 2번 9평 10평은 다 맞았지만 러셀 윈터모의 2번 1쪽 오답률 60%인데 ㅁㅌㅊ?
-
안녕하세요. 저는 현재 예비 고2이며, 수학 공부를 열심히 하고 있습니다. 1학년...
-
하면서 한사람 매장질하는거 개싫음. . .
-
설사범vs연고경 3
설인문vs연고경이면 아무래도 전자가 확실히 우세해 보이는데 설사범이어도 전자가심?
-
하..
-
LPF9MMU 사람이 올지는 모르겠다.
-
메가스터디 고3 계정이 고1 강좌 수강하면 정지당하나요? 6
동생이 고1이라 제 고3 계정으로 고1 통합과학 인강도 수강하려는데 그러면 정지와...
-
ㅈㄱㄴ
-
그래서 뻘글 몇개만 지우고 탈릅할거임 이제 입시 얘기 같은 거 안 하고 살려고...
-
이거 맞나요 저능아라서 진짜 거의 1시간 박아서 푼거같은데 모든 실수가 엄청난 조건이였네요
-
바로 와플대학이에요. 저렴한 학비지만 국가장학금은 절대 안나오는 대학 중 하나랍니다 ㅠㅠ
-
자꾸 대화하는데 생각이 많아지게 하는 인간유형 머리를 굴리는게 보이거나 막...
-
어린 시절의 꿈은 말할 수 있습니까. 그 꿈마저 시궁창에 버린 것은 어이, 누구야....
마지막 공통접선 공식 올해 왠지 쓸일 있을 느낌
본문 이차함수 부분에서 언급한 문제입니다!
https://orbi.kr/00061780743/%EC%88%982%20%EC%A0%81%EB%B6%84%20%EC%9E%90%EC%9E%91%EB%AC%B8%EC%A0%9C
기대 안하고 들어왔다가 생각보다 신박한게 많아서 개추 + 팔로 박고 스크랩 떠서 갑니다!
바로 스크랩
삼차함수 2번공식이 진짜 자주쓰이는데 생각보다 사람들이 잘모름ㅎ
그러게요 되게 유용한데 은근 안 알려짐
좋아요를 누를 이유가 있는 글..!
좋은 글 감사합니다 :)
삼차함수 변곡점 지나는 공식하고 그외 언급하지 않으신것들은 최고차항이 필요없나요?
최고차항은 전부 곱해줘야 합니다! 어차피 다 곱해줘야 해서 외워야 할 부분만 적은거였는데, 언급을 제대로 할 걸 그랬네요 ㅜ