미적분러라면 이 정도는
게시글 주소: https://hpi.orbi.kr/00070627172
저번 수능 20번 문제 기억하시나요.
딱히 해석할 필요 없이 그냥 대입 잘 하면 풀리는 문제였습니다.
하지만 그 문제에
기하적인 해석을 곁들여서 이해할 수 있으면 좋을 것 같아요.
그런 느낌의 해석이 이전 수능에 나오기도 했구요. (2022수능 30번인데, 밑에서 보여드릴게요.)
일단 작수 20번 문제 읽어보겠습니다.
그려보면,
이런 상황이네요.
다음 부분 보겠습니다.
일단 x>k 인 부분은 그냥 알려줬어요. 그럼 궁금한 건 x<k 부분이죠.
일단 얘를 통해 x<k인 부분의 정보를 알 수 있다고 느껴야 합니다.
함수가 막 합성돼있다고 쫄 필요 없어요. 차근차근 보면 됩니다.
일단 우리가 f(x)에 대해 아는 게 x>k니까
k보다 큰 x를 저기에 대입한다고 생각해볼게요.
x>k일 때,
f(x)는 0 ~ k 의 함숫값을 가집니다.
즉...
0 ~ k 의 어떤 수를 다시 f(x)에 넣었을 때의 얘기를 하는 중인겁니다.
그러니까 식을 통해 이 노란색 영역에서 f(x)가 어떻게 생겨먹었는지를 알 수 있는거죠.
이제 기하적인 해석을 시작해보겠습니다.
우선 식을 변형해줍니다.
아까도 말했지만 x>k에서만 관찰해줄 겁니다. 그 뜻은,
우변에 결과물은 k보다 큰 값이 나온다는거네요.
그나저나 이 식 약간 역함수가 연상되지 않나요?
잘 안 보인다면
이렇게 g(x)를 정의하고 다시 볼게요.
즉
밑에꺼 보면 확실히 보이죠.
f(x)와 f(x) /3이 역함수 관계에 있다는 건,
f(x)를 y=x에 대해 대칭시킨 뒤에 3배를 하면 다시 f(x)가 나온다
는 뜻입니다.
여기가 조금 어렵죠? 지금 생각할 게 좀 많아요.
제가 가독성을 위해 범위를 빼고 러프하게 말했지만, 범위도 고려해야 해요.
냅다 f(x)와 f(x)/3가 역함수인건 아니니까요.
잠시 멈춰서 생각을 하다가 넘어가보세요.
여기가 핵심입니다.
충분히 고민해보셨나요? 이제 같이 보겠습니다
이게 우리가 아는 f(x)구요,
x>k 구간의 f(x)를 y=x에 대해 대칭시켜주면
이렇게 됩니다. 이제 여기에 3배를 해주면
모든 함숫값이 3배가 됩니다.
지금 나온 연두색이 바로 0~k 구간의 f(x)에요.
f(x)의 x>k 구간과,
f(x)/3 함수의 0<x<k 구간이
역함수로 대응되는 구간입니다.
이제 남은 건 계산입니다.
k가 뭐였냐면
얘였습니다. 조금 정리해서,
이걸 뽑아낼 수 있겠죠.
문제에서 물어본거랑 비슷하게 생겼네요.
양변을 세제곱해주면 문제에서 물어본 복잡한 저거가
실은 얘였다는 걸 알 수 있겠죠.
지금 x자리에다가
얘 넣으면 함숫값 뭔지가 궁금한거에요.
이제 그림으로 돌아가볼게요.
일단 저기가 12인게 보여야 해요. 왜 12냐면
얘를 뒤집어준거니까요.
x-3=9, 즉 x=12
근데 구해야하는 건 12가 아니죠
그거 3배해줘야 합니다. 뒤집고 3배라고 했으니까요.
답은 36입니다.
저는 사실 문제를 처음 봤을 때 딱 이렇게 풀었습니다.
그냥 대입 몇 번 하면 나온다는 건 다른 분들한테 듣고 나서야 알았어요.
조금 허망했던 기억이 있네요..
그나저나 식을 이렇게 인식하는 건 종종 쓰이죠. 특히 미적분러라면 더 그럴 겁니다.
중요한 건 f(x)를 기준으로 서술하는 것입니다.
"f(x)를 뒤집고 3배하면 다시 f(x)가 나온다!" 처럼
f(x) 기준으로 서술해야 안 헷갈려요.
관련 문제 하나 던져드리고 글을 마치겠습니다.
심심하면 풀어보세요
(출처: 2021 시행 대수능 미적분 30번)
그냥 계산하지 마시고, 제가 보여드린 것처럼
이 부분을 기하적으로 인식하면서 해보세요.
더 좋은 글로 또 찾아뵙겠습니다.
좋아요 눌러주고 가주세요 ㅎㅎ
#무민
0 XDK (+10,000)
-
10,000
-
반갑소
-
2백 2볼란치 양쪽 윙미로 웡미는 수비적인 풀백 출신 애들이 좋음뇨 리제라던지...
-
저 레전드 썰 있는데 특정때문에 못풀고있음
-
나이 좀 잇으신 분들 어케생각함.
-
서점가서 공대 전공서적 보자마자 마음 접음
-
이래서 현역때 실패한건가
-
이랄게 있나 。◕‿◕。
-
아무리 기균이라지만
-
모르는 사람은 첫인상으로 대체
-
이미지 써주세요 6
-
질문 있으면 바로 설대친구나 오르비에 던져두기
-
이미지 나도 써줄게 25
착하게 써줄게
-
게이 컨셉 단점 5
처음에는 웃기고 유쾌한데 나중가면 진짜로 남자한테 설레는 자신을 발견할 수 있음...
-
660.x 밑인데 고대 쓴 사람들은 뭐냐는 글이 있어서 궁금함다 제가 658.94거덩여..
-
장점: 돈 많이줌 그래도 구단수익 많이나서 ffp 안걸림 단점: 스쿼드가 좀...
-
전과자 서울교대 편에서 수업 중에 앞에 나가서 학생들이 초등학생이라고 가정하고 모의...
-
원래 몇시간 내내 상주하는 곳이 맞나요?
-
잠에 들어버리는 걸까
-
고추 1
고추
-
나는 홍대 법대 붙여달라고 소원을 빌거야
-
누구랑가지 어렸을땐 많이 탔는데 최근 몇년동안 안가서 스키 마려움 자세는 이상해도...
-
설교대좋긴해 3
위치좋음ㅇㅇ
-
연대 4학년 선배랑 같이 음악학원다니는데 평소엔 나도 그사람 대학 몰랏고 말 한마디...
-
신기하다
-
야심한 새벽 0
오뿌이는 맞팔을 할 사람을 찾아나서는데...!
-
n=3
-
이미지 써줄까 28
솔직히 아는 사람 별로 없긴한데
-
교대 <- 개인적으로 작금의 가치보단 훨씬 가치있다고 생각함
-
한번은 이미지쌤이 너무 돌아가는 풀이 하길래 이렇게 바로 풀면 안되냐 물어봤었고...
-
이건 돈 추가로 징수하기도 뭐하고 그냥 해줘야할 것 같네요... ㅋㅋ
-
걍 여기서도 비슷하게 하는거같아요 ㅋㅋ
-
그냥 욕한 기분인데 뭐지
-
눈을 감아보면 0
별은 영원히 빛나고 잠들지 않는 꿈을 꾸고 있어
-
저도원래말투로답변해드림 13
솔직히원래말투가뭔진잘모르겟어요
-
너 말하는거야 너. 이렇게 늦게 자서 아침공부는 어떻게 하려 그래. 빨리 자.
-
평소말투랑 똑같은거같은데
-
나도 qna 0
이때 아마 고2였을거임
-
농사는 서브컨텐츠다 ㄹㅇ로
-
응원합니다 (현수막 끝까지 잘 읽으세여)
-
읽어져 3
예전에 다니던 수학학원 A는 쌤이 나만 소리지르고 관종 만드시고 숙제도 안내주시고...
-
Chevon Dannie May yutori NEE 노멜론노레몬 Aooo...
-
댓글 보는 거 재밌었는데ㅋㅋ
-
??
-
야 코 걔 맞음ㅋㅋ 시청자좀 차면 시작한댕 tiktok.com/live/soeun
-
상처받지 마세요
-
체스하실분 2
ㄱㄱㄱ 씹 노베임 이제 규칙 알음
-
원래말투 11
-
내 옛날 흔적 6
-
고고혓
항상 잘 보고 있어요 좋은 글 감사합니다
미적분안했는데 이렇게 풀엇으면 ㅁㅌㅊ인가요
칭찬좀
수학상하 때도 열심히 하신듯요
저는 그래서 24수능 28하고 비슷하다고 생각하면서 풀었었네요..(근데 틀림 ㅜㅜ)
우악 토나와
오랜만이에요 :)
칼럼 잘 읽고 갑니다..! (0,k)에서 그냥 적절한 임의의 함수가 있겠지..하고 넘어갔는데 이런 방법으로 구해볼 수도 있었군요!
선생님 덕에 새롭게 배워가고 갑니다
가장 먼저 시도했었던 방법이네요 ㅋㅋ
확대축소 안 하고 바로 치환 때려도 나오는 거 같아유.
차피 f(x) (k<x) 는 일대일 대응이니깐 바로 역함수로
저도 역함수로 풀었는데 10분 잡아먹은것 같네요 ㅋㅋㅜ
ㄷㄷ..
저렇게 풀고 으쓱하다가
대입 풀이보고...ㅋㅋ
아니 요즘 수학 진짜 어렵네 ㅋㅋㅋㅋ
시간 ㅈㄴ 박아서 역함수로 풀었는데 대입 딸깍의 허망함은
나랑 똑같이 했네
저 방식으로 풀려하면서 k값을 정리할 때쯤 종이 쳐서 못풀었습니다 ㅠㅠ 5분만 더 줬으면 풀었을텐데
저도 막히고 나서 이방식으로 풀었는데 ㅋㅋ
풀이보고 허탈했음ㅋㅋㅋㅋ