-
들어도 돼요? 고2때까진 감으로 1 맞았는데 고3 기출 푸니까 바로 85점...
-
떨치고 자야지 1
레어생각만하면 잠이 안와요
-
항상 행복하세요
-
제일 재밋어 이상태로 짝녀랑 대화하는것듀재밌옸는데
-
살면서 케이크 딱 한번 먹어봤는데(어릴때 알러지때매 안먹음) 커서 알러지는 나아져서...
-
둘이똑같음
-
잔치국수 땡김 2
요즘 잔치국수 파는곳이안보여
-
음 그걸로 구분하면 되겠군
-
찌이익
-
오르비 안녕히주무세요 12
-
ㅈㄱㄴ 전자융합도 전자과인가?
-
하긴 케잌위에 딸기는 다 이쁜딸기더라 못생긴 딸기가 더 맛있긴한데 옯붕이들같아
-
대충 무릎 벅벅 긁으면서 낙서하듯 그려본 그래프 개형으로 어거지로 문제 만듦 그러고...
-
방황이 길다..
-
암빠킹 스튜피드 3
스리핑 bye
-
이거 평백몇임? 8
내가잘못알고있었나 평백 정확히 어캐계산함요
-
(?)(?)(?)(?)(?)(?)
-
없는거 같음 내가 올해수능 잘봤으면 안 우울했을까? 현역때 잘 갔으면 안우울했을까...
-
그만큼 joat같을수가 없음 그냥 독학하러 가는 수업임 사실 이건 대학 수업 과반인...
-
다들자냐 0
난 잠이안오네
-
아싸 장학 100이다 ~ 대치도 기준 알려주면 좋을련만.. 장학 덜 주려고 내부기준 이러네
-
재입학 관련글 1
안녕하세요! 반수고민중인 06년생입니다. 최근 대학 재입학제도에 대해 알게되었는데...
-
칸나레어는 사지마세요..
-
전 키배도 못뜨는데 말재주도 없어서 다른 커뮤에서는 싸울 일 생길까봐 글 잘 못씀뇨...
-
홍익대가 나 떨구면 반수해야하는데 반수ㅈ망대비 전과도 해야됨 안정으로 쓰려고 과를...
-
작수 원점수 96인데 수학 유기했다가 오랜만에 서바 풀어보니까 개어려움요.. 서바...
-
굿바이 오르비
-
To.ㅎㅇㄷ 2
갓익대 나 붙여줘
-
ㄸ닥 0
ㄸㄷ
-
레전드곰보였는데 피부가 거의 정상인에 근접해짐
-
약간 깨달아버렷어 11
잘라그랫는데
-
상대가 부끄러워하며 좋아하는것이 티가 난다면 초진심 칭찬하는것도 되게 도파민이 나와...
-
크아아아아ㅏ아아아아아ㅏㄱ
-
다즈비펀치! 다즈비펀치!
-
돌아왔다 42
-
gg.. 4
낼 풀자 찐 공간도형은 넘 어려웡..
-
형도 자러간다 27
12만 덬 모으기 여행 떠나야지
-
나도자러가야징 11
-
재미없네 12
그냥자야지
-
캌테일 on 2
매수 ㄷㄱㅈㄷㄱㅈ
-
새터는 꼭 가라 13
술게임 ㅈㄴ 재밌다
-
어렵다 11
모든 변이 주어진 사면체 이거 개쉬워보이는데 왜케 어렵지
-
증거 왜 안깜 제2의 보현아니냐
-
메인글 칼럼보다가 4번 왜틀렷는지 이제야 깨달음 아.
-
뭘 이리 많이 바꿨냐ㅋㅋ
-
전라도갈려면 여권있어야한다는 밈은 뭔밈임?
이건 5다
ㅈ..정답..!
이게 뭐야
와 이걸 맞혀?
발문이 어디서 본거같은데
3월 가형 30번이었나
2018 9평?
f(x) = t√x + x(lnx - 2)
f'(x) = t/(2√x) + lnx - 1
|f(k) - g(k)| = g(k), f(k) = 0 or 2g(k)
lim(x→0+) f(x) = 0 이고 f(x)가
구간 (0, ∞)에서 증가하면서
y = |f(x) - g(x)|가 x = k에서 최소이므로
f(k) = 2g(k), f'(k) = g'(k),
g'(k) ≥ f(k)/k → kf'(k) ≥ f(k)
여기서 k = h(t)이면 kf'(k) = f(k)이므로
t√k/2 + klnk - k = t√k + klnk - 2k,
t²k/4 = k², k = h(t) = t²/4
→ h'(t) = t/2, h'(10) = 5
정확합니다!
저 g'(k)≥f(k)/k 는 어떻게 나온건가유..?
아니 제발 해설 좀 궁금해서 일상생활이 불가능해요....
다른 건 알겠는데 저 부등식이 평균변화율로 관계식 만든 건가요??
그래프 직접 그려보니, x=k에서 최소이려면, f(x)의 x=k에서의 접선이 0,0 을 지나야 하는 게 k의 최소네요...
그래프만 잘 그렸다면 바로 보였을 텐데 아볼 위볼 파악을 잘 해야 했네요...