함수추론 자작문제
게시글 주소: https://hpi.orbi.kr/00070662243
계산은 많지 않지만 생각을 많이 해봐야 하는 문제 같습니다 개형만 찾으면 답은 바로 쓸 수 있으니 편하게 풀어보시면 좋을 것 같습니다 의도한 난이도는 22번 정도
(+)오류 있습니다..ㅠ 아래 조건을 추가해서 풀어주세요 죄송합니다
(나) (단, 두 실수 t1, t2는 -2도 아니고 2도 아니다.)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅈㄴ 귀찮은데 유기할까
-
합격증 나오면 1
바로 학잠 사러 ㄱㄱ해야겠다 과잠 어케 기다리노 ㅋㅋㅋ
-
그냥 미니멀로 가야지 올해도
-
고등학생도 대학생도 아니네 12년만에 무소속 입갤
-
Diplomacy>> 이거 지금까지 발음을 '딥로메씨' 이렇게하는줄 알았음 오늘...
-
코로나로 2년이 삭제됨ㅋㅋ
-
이거 보고있으니까 이제 고등학교도 끝이라는게 실감이 나네요 학교계정 원드라이브...
-
가려면 사탐2는 어려움? 교차지원 이런거말고 무조건 공대
-
전 그렇게 생각해요 아님말구
-
할짓이 없을 땐 0
표본분석을 해보아요
-
하아 이 색히는 왜 글을 띄엄띄엄 써놔서..
-
방학동안 할 것 9
계절학기 c++ 수능경제 찍먹/금리공부 관심 개별주 유튜브로 찾아보기 kmo조합론...
-
아 잠 안와 2
그냥 오늘 밤 새고 내일 에너지 드링크 마셔야지 수능끝난고3이잖아 아ㅋㅋㅋㅋㅋ
-
노래 추천 5
유일하게 듣는 일본 노랜데 이거 영화도 봤는데 내용도 좋더라구요 수험생 맞춤형인듯
-
반갑습니다. 6
-
이번달이 끝이길...
-
왤케 늦어지지..
-
등교해야겟다 10
-
어릴때 내가 생각하던 성인의 내모습은 이게 아니었는데 5
성인을 앞두고 있는 나 어디서부터 잘못된건지 모르겠어 06이 대체 왜 성인이 된걸까
-
안들어갈수가 없는 제목
-
우웅 5
우웅
-
프사 바꿨읍니다 2
곧 용산에 입성하실 그분으로
-
못살겠다꾀꼬리 3
ㅡ
-
와타시와 심심하다데스
-
술취한김에 6
맞팔을 걸어주세요..!!
-
3수까지망하면
-
아침형인간이다vs저녁형인간이다
-
7칸~9칸인 친구들도 못 빠져나가는 경우가 간혹 있다 5
칸수 높은 친구라고 무조건 빠져나가는 건 아님
-
롤모델 4
이카리 신지 멘탈 + 스파이크 스피겔 주도성 + 셜록 홈즈 통찰력 + 양조위 외모...
-
경영 vs 행정 0
경영이랑 행정이랑 차이 많이 나나요?!? 졸업하고 나서 진로나 취업이나 배우는...
-
인가요
-
자기 전 무물보 12
아무나 해주세요
-
개마싯음
-
전북네컷 1
-
맥주 또깠다 4
내친김에 쏘맥으로
-
시험 조금(1컷 바로 아래정도/중간고사라 커버가능)망치면 인생 망한것처럼...
-
지금 계신분들은 6
자고 일어나신건가요? 아님 아침 부터 지금까지 안 자고 계신건가요? 저는 후자 ㅎㅎ
-
질문에 따라 답변의 수준도 달라짐 5명만
-
홍익대 다군 건설환경공 되려나요 진지하게 현실적인 답변 부탁드립니다..
-
10년전 글들 보면 다 9x년생들이고 다 프로필 눌러보면 회원 정보가 없음......
-
사람이 이렇게 다채로운 실수를 할 수 있구나
-
김치우동이랑 소주 먹으면 뭔기 잘 들어가긴하던데 그렇다고 소주가 맛있는건...
-
오노추 8
키야야야야 돌아와요 이석원ㅠㅠㅠㅠㅠㅠㅠㅠㅠ
-
드립치는게 너무 내 스타일이라 그분 없었으면 누비시절에 댓글안달리는거 못버티고 접었음 잘지내시죠
-
진짜 아무거나 해봐요
-
다마시고 한잔 더할까 짜피 6시반쯤 잠들텐데
-
능동적으로 판단하는 게 좋다
-
또또 저혼자만 진심이었나보네요 ㅠㅠㅠㅠㅠ
-
학교에서 박람회? 비슷한 거 했는데 학교 연못 가운데에 그릇 같은 거 두고 '소원...
-
미적vs기하 3
올해 미적 선택자인데(3등급, 보통 서바이벌 봤을때 70후반~80초 뜹니다) 기하로...
개어렵네 ㄷㄷ
안어려워용..
옹 이건 풀어봐야지 잠만녀
제발 풀이좀 알려주세요ㅜㅜ
오류가 있어서 죄송합니다..ㅠ 확인하시고 다시 풀어보실래요?
크악..ㅜㅜ
현역이신가요?
올해 수능 쳤습니다!
오,,,그렇군요
수학 양식 같은 거 완벽하게 숙지하신 게 신기하네요
![](https://s3.orbi.kr/data/emoticons/rabong/011.png)
워낙 좋아하다보니 그런 것 같습니다 :)문항 제작 많이 연습해 두세요! 조만간 제안 하나를 드릴 수도 있을 것 같아요
오우 말씀만으로도 감사합니다 :) 언제든 맡겨주십쇼!
아 문제 잘못봤네요 죄송합니다!
이거 정답개형이 뭐죠...?
234 맞나요?
아니네요 흠
오류 수정한 것에 따르면 맞습니다! 제가 의도한 답은 이거에요..ㅠ
아 -2가 비어서 다시 푸는데 그걸 빼야 했군요
![](https://s3.orbi.kr/data/emoticons/dangi/035.png)
좋은 문제 감사합니다아닙니다.. 시간 낭비하게 해서 너무 죄송합니다ㅠ 부족한 문제 풀어주셔서 감사합니다!
1. g(x) 좌우극한 다르려면 그지점에서 f(x)와 x의 대소 바뀌어야함 and f(x)와 x의 대소가 바뀌면 x가 0이 아닐때 g(x) 좌우극한 다름 -> 'x가 0이 아닐때 g(x) 극한 not 존재'와 '0이 아닌 x에서 f(x)의 대소변화'는 서로 필요충분조건, 따라서 x=0을 제외한 f(x)에서 x=4에서만 대소변화
2. f(x)-x는 사차함수이므로 부호변화가 짝수개 있어야함 -> x=0에서도 f(x)와 x 대소변화 (x=0과 x=4에서만 f(x)와 x의 대소변화)
3. f(x)의 최고차항 계수가 양수일 때: 0 f(2)<0
4. h(inf)=2이므로 h(x)<3
5. f(2)<0이고 f(4)=4이므로 20 인 x 존재 and 같은 논리로 f(0)=0이므로 0 0(+) 지점 존재 = f(x) 극소 존재
6. 이 극솟값이 양수면 같은 논리로 다른 극솟값 또 존재 -> 극소의 개수는 유한하므로 음의 극솟값 존재
7. g(x)=-f(x) (0 이 양의 극댓값을 c라고 하면, g(-inf)=inf고 g(0)=0이므로 g(x)=c인 x<0 존재, 따라서 lim x->c- h(x) >=3 -> 모순 -> 따라서 f(x)의 최고차항 계수는 음수
8. f(x)의 최고차항 계수가 음수: 0x>0이고 반대로 x<0, x>4에서 g(x)=-f(x)
9. g(0)=0이고 g(4)=4이므로 04에서 f(x)=0인 x 존재 -> 이 x를 a라고 하면 g(a)=0이고 g(inf)=inf이므로 x>a에서 g(x)=c인 x 존재
11. 따라서 g(x)=c의 실근은 최소 3개이므로 h(c)>=3 -> 모순
12. f(x)의 최고차항 계수를 양수라고 가정해도 모순, 음수라고 가정해도 모순
아 기껏 타이핑했는데 텍스트 깨졌네...
맞나요!!
맞습니다! 저 문제 자체는 모순입니다.. 오류 수정했는데 다시 한번 풀어봐주실래요 죄송합니다..
제발정답좀요 ㅠㅠ 못자겠어요
오류 확인하셨나요?
넵..
그래프 개형입니다!
아 저렇게 g(2)만 톡 튀어나와 있으면 되는구나..ㅠㅠ 위로 볼록이 생기면 안되는데 g(2)>0이려면 f(2)<0이고 그럼 위로 볼록이 무조건 생기는데??? 로 계속 헤맸어요 수능 공부할때도 이런거에 취약했던... 그래서 뭔가 y=x에 한번 접하지않을까 생각했는데 저걸 안해봤네요
저런 디테일 찾는 게 쉽지는 않죠 ㅠ 풀어주셔서 감사합니다!
ㅋㅋㅋㅋㅋㅋ제가 죄송합니다ㅜㅜ
중근갖는걸 생각못해서 한참 해맸네요
닫힌부등호인지 열린부등호인지 잘봐야하는데 감다떨어졋네
조건 자체에 모순이 있기도 했으니.. 더 힘드셨을 것 같습니다 모순 찾으신거 다 적어주시고 정말 감사합니다!
f(x) = 1/16 x(x-2)²(x-4)+x
f(-6) = 234