미적분러라면 이 정도는
게시글 주소: https://hpi.orbi.kr/00070627172
저번 수능 20번 문제 기억하시나요.
딱히 해석할 필요 없이 그냥 대입 잘 하면 풀리는 문제였습니다.
하지만 그 문제에
기하적인 해석을 곁들여서 이해할 수 있으면 좋을 것 같아요.
그런 느낌의 해석이 이전 수능에 나오기도 했구요. (2022수능 30번인데, 밑에서 보여드릴게요.)
일단 작수 20번 문제 읽어보겠습니다.
그려보면,
이런 상황이네요.
다음 부분 보겠습니다.
일단 x>k 인 부분은 그냥 알려줬어요. 그럼 궁금한 건 x<k 부분이죠.
일단 얘를 통해 x<k인 부분의 정보를 알 수 있다고 느껴야 합니다.
함수가 막 합성돼있다고 쫄 필요 없어요. 차근차근 보면 됩니다.
일단 우리가 f(x)에 대해 아는 게 x>k니까
k보다 큰 x를 저기에 대입한다고 생각해볼게요.
x>k일 때,
f(x)는 0 ~ k 의 함숫값을 가집니다.
즉...
0 ~ k 의 어떤 수를 다시 f(x)에 넣었을 때의 얘기를 하는 중인겁니다.
그러니까 식을 통해 이 노란색 영역에서 f(x)가 어떻게 생겨먹었는지를 알 수 있는거죠.
이제 기하적인 해석을 시작해보겠습니다.
우선 식을 변형해줍니다.
아까도 말했지만 x>k에서만 관찰해줄 겁니다. 그 뜻은,
우변에 결과물은 k보다 큰 값이 나온다는거네요.
그나저나 이 식 약간 역함수가 연상되지 않나요?
잘 안 보인다면
이렇게 g(x)를 정의하고 다시 볼게요.
즉
밑에꺼 보면 확실히 보이죠.
f(x)와 f(x) /3이 역함수 관계에 있다는 건,
f(x)를 y=x에 대해 대칭시킨 뒤에 3배를 하면 다시 f(x)가 나온다
는 뜻입니다.
여기가 조금 어렵죠? 지금 생각할 게 좀 많아요.
제가 가독성을 위해 범위를 빼고 러프하게 말했지만, 범위도 고려해야 해요.
냅다 f(x)와 f(x)/3가 역함수인건 아니니까요.
잠시 멈춰서 생각을 하다가 넘어가보세요.
여기가 핵심입니다.
충분히 고민해보셨나요? 이제 같이 보겠습니다
이게 우리가 아는 f(x)구요,
x>k 구간의 f(x)를 y=x에 대해 대칭시켜주면
이렇게 됩니다. 이제 여기에 3배를 해주면
모든 함숫값이 3배가 됩니다.
지금 나온 연두색이 바로 0~k 구간의 f(x)에요.
f(x)의 x>k 구간과,
f(x)/3 함수의 0<x<k 구간이
역함수로 대응되는 구간입니다.
이제 남은 건 계산입니다.
k가 뭐였냐면
얘였습니다. 조금 정리해서,
이걸 뽑아낼 수 있겠죠.
문제에서 물어본거랑 비슷하게 생겼네요.
양변을 세제곱해주면 문제에서 물어본 복잡한 저거가
실은 얘였다는 걸 알 수 있겠죠.
지금 x자리에다가
얘 넣으면 함숫값 뭔지가 궁금한거에요.
이제 그림으로 돌아가볼게요.
일단 저기가 12인게 보여야 해요. 왜 12냐면
얘를 뒤집어준거니까요.
x-3=9, 즉 x=12
근데 구해야하는 건 12가 아니죠
그거 3배해줘야 합니다. 뒤집고 3배라고 했으니까요.
답은 36입니다.
저는 사실 문제를 처음 봤을 때 딱 이렇게 풀었습니다.
그냥 대입 몇 번 하면 나온다는 건 다른 분들한테 듣고 나서야 알았어요.
조금 허망했던 기억이 있네요..
그나저나 식을 이렇게 인식하는 건 종종 쓰이죠. 특히 미적분러라면 더 그럴 겁니다.
중요한 건 f(x)를 기준으로 서술하는 것입니다.
"f(x)를 뒤집고 3배하면 다시 f(x)가 나온다!" 처럼
f(x) 기준으로 서술해야 안 헷갈려요.
관련 문제 하나 던져드리고 글을 마치겠습니다.
심심하면 풀어보세요
(출처: 2021 시행 대수능 미적분 30번)
그냥 계산하지 마시고, 제가 보여드린 것처럼
이 부분을 기하적으로 인식하면서 해보세요.
더 좋은 글로 또 찾아뵙겠습니다.
좋아요 눌러주고 가주세요 ㅎㅎ
#무민
0 XDK (+10,000)
-
10,000
-
?
-
기분은 좋다 우하하
-
내가더못생겼을텐데 공동 ㅇㅈ도 안받네..
-
대학을 가면 누군가 나를 알아볼수도 있겠네 인증 하지 말아야지
-
취한김에 진지한 이야기 10
엉덩이는 무슨맛일까... 마블링 풍부해서 맛있을거같지않음?
-
인구수체크
-
슬슬자야지 1
-
야식 먹자 10
한끼는 에바야..
-
점공 안들어오는 사람들은 5칸 이상이 많나요? 그 아래가 많나요? 외대 상경계열...
-
친구 없다면서 ㅇㅈ은 실친이 볼까봐 못하겠다고하네요~
-
07친구가 없어
-
일단 저는 방금 일어남
-
공통 풀면 비내리는데 확통은 자이스토리도 다 맞아버리는 나를 발견할수있음 자존감 상승.
-
나 피크민 닮음?
-
. 어? 07이 현역인데 왜 오르비를 안해?
-
나도 2
실친이 볼까봐 쫄려서 사진은 못 올리겠는데
-
눈물날려그래 자꾸 나 왜이래…
-
ㅎㅎ
-
전체인증은 ㄹㅇ 신상때메 개에바고
-
아루 이쁜듯 2
근데 블아 어케하믄건지모르겟어서걍 안하고잇음
-
본인 최애곡 4
Ghvstclub-Misfit97 한동안 저것만 듣고 다녔었는데 뭔가 다크한 느낌이라 좋았음
-
이따 오전에 부모님이랑 옷 사러 가기로 해서
-
퓨ㅠㅠ
-
"그녀석"이 업어서 그래.. 하아..
-
안돼 이제 자야지 ㅃㅇ
-
Ai ㅇㅈ 2
-
연대 펑크 0
연대 이과 빵 어디어디 난것같나요...???
-
ㅇㅈ ㅇㅈ ㅇㅈ 8
ㅇㅇ
-
재밋음
-
빽다방에서옛날커피를사서마실때 천원을내고설탕가득호떡을깨물때 계획표의모든계획에체크표가쳐질때(희귀함)
-
내가 그얼굴이었으면 진지하게 맨날 강남 홍대 이태원 갔음..
-
울고 있었다면 다시 만날 수 없는 세상이 멋지지 않았는가
-
제가 좋아하는 스타일들 모음
-
유빈 4
유빈아카이브 같은 자료방 더 없냐 추천 좀 해줘라
-
그런게 가능할까
-
양악 윤곽 눈 코 이마거상 지방흡입 드가자 ㅋㅋㅋㅋㅋ
-
요즘 소확행 1
내 몸이 버틸 수 있는 최대 따뜻한 온도로 샤워할 때 창문 열면 영하의 한기가 후욱...
-
아줌마 왜 좋아하냐면서 씨부랄 것들
-
언매 커리 누구 들을까. 언매는 김동욱.
-
우와 와 와 5
K~~~C~~~
-
공익무조건 뜰거같은데 이미 망한 인생 군대보내서 뭐하게...
-
역시 대 이 유 1
최강 동안
-
맞팔구함 2
ㅇㅈ은 조만간 할게요
-
ㅇㅈ할까? 6
말까
-
이거 봐 5
사진 마다 다르게 나옴 1.5점씩이나 차이나는데
-
듣기전에는 커뮤에서 어렵다길래 무슨 고능아 전용 빡쎈 강의인줄 알았는데 초반...
-
ㅇㅈ 7
대 가 천
-
난 ㅅㅂ 왜 못들어봤지 분명 좋은 공교육 강사인데 드릉드릉이라는 말 쓰는게 조금...
-
평범하게만 생겼더라면... 평범한 지능만 가졌더라면...
항상 잘 보고 있어요 좋은 글 감사합니다
미적분안했는데 이렇게 풀엇으면 ㅁㅌㅊ인가요
칭찬좀
수학상하 때도 열심히 하신듯요
저는 그래서 24수능 28하고 비슷하다고 생각하면서 풀었었네요..(근데 틀림 ㅜㅜ)
우악 토나와
오랜만이에요 :)
칼럼 잘 읽고 갑니다..! (0,k)에서 그냥 적절한 임의의 함수가 있겠지..하고 넘어갔는데 이런 방법으로 구해볼 수도 있었군요!
선생님 덕에 새롭게 배워가고 갑니다
가장 먼저 시도했었던 방법이네요 ㅋㅋ
확대축소 안 하고 바로 치환 때려도 나오는 거 같아유.
차피 f(x) (k<x) 는 일대일 대응이니깐 바로 역함수로
저도 역함수로 풀었는데 10분 잡아먹은것 같네요 ㅋㅋㅜ
ㄷㄷ..
저렇게 풀고 으쓱하다가
대입 풀이보고...ㅋㅋ
아니 요즘 수학 진짜 어렵네 ㅋㅋㅋㅋ
시간 ㅈㄴ 박아서 역함수로 풀었는데 대입 딸깍의 허망함은
나랑 똑같이 했네
저 방식으로 풀려하면서 k값을 정리할 때쯤 종이 쳐서 못풀었습니다 ㅠㅠ 5분만 더 줬으면 풀었을텐데
저도 막히고 나서 이방식으로 풀었는데 ㅋㅋ
풀이보고 허탈했음ㅋㅋㅋㅋ