경제학과와 과탐의 연관성(경험에 비추어)
게시글 주소: https://hpi.orbi.kr/00066174560
최근 이공계열의 학생들의 경제학과 진학이 부쩍 많아진 것 같습니다.
저 또한, 과거 이과 학생이었고, 물리1 화학2 수능 응시 후 대학에 진학한 학생입니다.
많은 학생들이 과학탐구를 공부하였던 것이 아깝기도 하고, 경제학과 기존 이과공부의 차이에 대해 많은 거부감? 혹은 공포감을 가지고 있을 것이라고 생각합니다.
하지만, 제가 경험한 결과 학문이라는 것이 많이 연결되어있고, 저는 물리1 화학2 과목에서 공부했던것과 유사점을 많이 찾을 수 있었습니다.
우선 미시경제학 파트의 일반균형 파트에 대해서 간략하게 말씀드려 보겠습니다.
경제학에서 일반균형이라 하면, 모든 소비자가 예산제약하에 효용이 극대화 되는 상품묶음을 선택하고, 모든 기업은 주어진 여건 하에서 이윤을 극대화하며, 소비자가 원하는 만큼 생산요소를 공급하고, 상품시장과 생산요소시장의 수요와 공급이 일치하는 균형점을 의미합니다.
이때 생산은 잠깐 제외하고, 순수 교환시장에서만 생각해 볼 경우
이때 소비자간의 계약 가능점들을 이은것을 에지워즈 박스(위 그림입니다.) 계약곡선이라고 부릅니다.
이때 우리는 최적의 균형점을 찾기위해서 '미분'을 사용합니다.
보통 물리에서 미분은 속도를 미분하여 가속도를 구할때 사용합니다. 마찬가지로 경제학에서는 효용의 변화량 즉 한계효용을 구하기 위해서 미분을 사용합니다. 우리가 물리, 수학에서 공부하였듯 미분은 '변화량'개념이기 때문입니다. 이를 통해서 A를 한개 얻었을때의 한계효용, B를 한개 얻었을 떄의 한계효용 등을 구하기 위해서죠.
그리고 이 균형점은 각 소비자들의 A, B 상품의 한계효용비가 일치할때 이뤄 집니다.
즉, 다르게 설명하면, 서로 다른 두 소비자들의 각각의 물건의 가속도가 일치할때가 최적이라는 뜻이 됩니다.
이를 화학2에서 배우는 화학반응식 적으로 설명하자면, 화학식에서의 우변과 좌변의 반응 속도가 일치할 때라는 뜻 입니다. 즉 평형상수 개념이 떠오릅니다.
그런데 참 재밌습니다. 사람들간의 최적점이 평형상수라니 그러면 여기서 하나더 생각해 볼 수 있습니다.
각 사람들의 균형점을 평형상수라고 생각한다면, 각 사람들의 효용은 반응 속도라고 생각할수 있겠네?
놀랍게도 효용식이 유사한 면이 있습니다. 물론 모든 경제학적 함수를 이렇게 표현하진 않지만 가장 많이 사용되는 콥-더글라스 함수식을 보면,
와 같이 놀랍게도
와 매우 유사한 모습을 보여줍니다.
여기서 끝이 아닙니다. 경제학에서 많이 사용되는 생산함수, 즉 노동과 자본을 투입하여 얻어지는 산출물에 대한 함수는 콥 - 더글라스 생산함수로 표현되는데, 이는
진짜 놀랍도록, 화학 반응속도식과 똑같은 모습을 보여줍니다. 문제를 해결하는 과정 또한 유사하구요.
이렇게 화학2와 연관되어있는 부분 말고도 경제학에는 과학적 사고방식과 연관되어있는 부분들이 많습니다.
예를 들면, 최근 가장 활발하게 연구되고있는 DSGE모형(동태확률 일반균형)은 미시적인 모든 사람들의 행동을 확률적으로 규정하고 이를 적분하여(쌓아올려) 거시적으로 경제적 동태를 예측합니다.
마치 양자역학에서 미시세계의 작은 원자의 행동들은 확률적으로 계산하고, 거시적인 현실세계에서의 움직임은 역학으로 구현해 내듯이요.
금융분야로 넘어간다면, 그 유명한 블랙숄즈 방정식이 브라운운동에서 차용된 식이라는 것 또한 유명합니다.
브라운 운동 공식
블랙 숄즈 공식입니다. 이처럼 물리학 또한 경제학에 영향이 많고 유사한점이 많다는 것을 알 수 있습니다.
이렇게 생각보다 학문들은 굉장히 유기적으로 연결되어있고, 사회과학에서 가장 수리적인 분야인 경제학은 그 영향을 가장 많이 받은 학문 중 하나입니다.
저처럼 물리1 2 화학1 2 까지 고교과정에서 모두 학습하였고, 순수 이과였지만, 경제학과에 관심이 생긴 학생들은, 이제것 배워왔던 공부의 아쉬움과 앞으로 전혀 다른것을 공부해야한다는 두려움이 있겠지만, 적어도 경제학에서는 그렇게 아쉬워 할 필요도, 두려워 할 필요도 없다는 것을 말씀드리고 싶습니다.
결국, 수능은 저희의 많은 지식을 테스트 하는 시험이 아니라, 수학능력 시험이며, 수리적, 과학적 사고방식은 어디든 활용 활 수 있는 좋은 무기입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
접수자수 < 응시자수 이건 카르텔 아입니꺼!!!
-
뉴런에 수분감 들을건데 마플이나 마더텅 같은 시중문제집도 병행해야하나요? 그리고...
-
붙을 가능성 높나요? 행정학과
-
막상 군대 가보면 사람들 학력수준이 생각보다 많이 낮다는데요 ㅋㅋ 육군은 그냥...
-
얼버기 12
갓생 4일차 오늘은 여행가요
-
더럽게졸리네 0
한번이라도 푹잤다간 지각이고 빡쌔다 빡싹
-
덤벼라세상아
-
근데 사탐런 3
24처럼 과탐 불 사탐 물로나와서 분리변표 쓰면 멸망 아님? 그런 리스크들 다...
-
ㅈㄴ 어렵게 나와서 표점 떡상 혹은 딴 과탐이 물로 나와 표전 떡락 (표점 기준) 흐흐
-
전 처음에 불호였다가 뭔가 재밌을 것 같고 아래에서 생활하다가 복층에서 자면 꽤...
-
원래 자랑하려고 인스타 사용하는 거 아닌가? 돈자랑 차자랑 등 온갖 자랑은 다...
-
오늘은 진짜 억까라 더 혈압 오름 경기내용도 내용이지만
-
.
-
쪽잠자기 성공 오늘도 파이팅!!
-
얼버기 1
-
목에서 뚝이 아니라 우직 소리가 났는데 하루종일 목을 잘 못 돌리고 계속 아픔 왼쪽...
-
마라훠궈는 잘 먹는데 토마토탕은 안먹어봐서요
-
6시 얼버기 3
ㅇㅈ메타 있었음?
-
롤하는 모 교수 모교 교수로 이번에 반수런
-
ㅇㅂㄱ 3
오늘도 6시기상
-
그냥 편의상 음슴체로 쓰겠음. 본인은 사탐런헤서 25수능에서 쌍윤 선택해 생윤...
-
토할거같은데 나중에 배 안고파지려면 먹어야되는데 아침은 왜이렇게 속이 더부룩할까
-
심판 개새끼야
-
ㅠ
-
재작년에 기출 한번 했는데 다시해야할것같아서요 마더텅 하려니 문제수도 많아서요 낮은...
-
보는중 6
진격거
-
먹긴 먹었는데 머리털 다 빠지것음 탈모 아님.
-
점공 상황 좀 공유해줘… 얼마나 핵펑이길래 이리 조용?!
-
https://xurl.es/4stnb
-
빵꾸가 1. 애초에 점수 높은 학생들이 지원을 안해서 점수 낮은 학생들이 최초합...
-
꾸중글 2
꾸중듣기
-
한양대 2
가고싶어...심심해.... 입학 언제해
-
기차지나간당 6
부지런행
-
야심한 새벽 질문받아요 13
시급 1만1천원 알바생입니다.
-
일단 복학 버튼 눌러야하나
-
과외학생 1
과외학생 확통 5-6등급대면 어느정도지
-
그렇습니다..
-
한의대가고싶다 0
연구도 하고싶고 돈도벌고싶고 간지도 챙기고 안정성도 챙기고 걍 모든 타협의 결정체
-
반수준비 0
1. 1학기에 교양과목으로만 신청하고 독재학원 다니면서 수능공부하고 2학기 휴학하고...
-
만 명 넘겠는데
-
요즘 찾아보는거 1
파이 충돌이라고 하는데 개신기함 ㄹㅇ
-
ㅆㅍ
-
주식 시작 8월쯤 뭣도 모르고 시작하자마자 엔비 100불 찍는 하락장 맞아서 털림...
-
내일 에리카 발표 나는데 이정도면 발뻗고 자도 ㄱㅊ? 4
현역이고 내신 망한 정시 파이터임. 재수 절대 안하고 싶단 생각이 강해서 그냥 뭔가...
-
현역이엇고 정시로 홍대숭실대세종대 이과계열 지원함 인문논술 학원 안다니고 혼자하는거...
-
내신 베이스 없고 통합과학 5등급 베이스만 있으면
-
군자의 복수는 5
2년이 걸려도 늦지 않다 https://orbi.kr/00060657257 원글은...
인정.
오...그렇군요
수능 수학은 계산이상의 것을 요구하는 측면이 있어서 사실 대학 공학이나 경제학 공부의 경우
수학을 도구로 사용하기때문에 막 엄청난 수리적 능력을 요구하진 않습니다.
다만 수능 잘본 학생들이 보통 머리도 좋고 숫자도 친하니 잘할 가능성이 높을 뿐이죠
오펜하이머, 아인슈타인 등도 수학을 잘하긴 했지만 수학이 특기는 아니었습니다. 영화에서도 나오듯
"The important thing isn't can you read music, it's can you hear it. Can you hear the music, Robert?"
악보를 읽을 줄 알면 괜찮습니다.