2468 N제 수2 (N제 형식 ver.) 배포!
게시글 주소: https://hpi.orbi.kr/00063082397
2468 n제 (수2).pdf
안녕하세요!
2468 N제 수2 (N제 형식 ver.) 배포합니다!
올렸던 수2 N제의
N제 형식 ver. + 문항 추가
입니다!
(이름이 2468 N제인 이유는 포만한 닉이 2468이라서 입니다)
풀어주신 모든 분들께 감사드리며
곧 있을 6평 및 수능까지 진심으로 응원합니다!
감사합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이제 안녕 0
처음 급하게 지었던 집인데 이제 이사 갑니다 나중에 광질하러 올수도 있으니 횃불은...
-
1차합 입력할 수 있는데를 만들어놔야지 지금 몇일쨰 이러는중?
-
안녕하세용 06 현역 중앙대 문과 입니당 1. 중앙대 낮과라 공공인재나 경영으로...
-
사탐 노베인데 일주일에 4번정도씩 총8시간하거나 아니면 매일 한시간씩하는거 뭐 추천하시나요???
-
기하 찍먹하고 싶으면 12
공간도형 먼저 하는것도 ㄱㅊ다봄 솔직히 이차곡선은 다들 할만 하다 느낄거고 벡터는...
-
탐구는 다 인강으로 하고싶어서 국수영만 수업신청햇는데 ㄱㅊ은가요? 최소강좌수는 채웠음
-
나는노트북으로블아리세마라컴으로는메이플공중정원잠수폰으로는웹툰탭으로는롤토체스4배럭햇음
-
블루베리스무디 12
블루베리스무디
-
에어팟4 에어팟프로2 버즈 프로3 뭐 살까요?? 운동이랑 인강 들으려고 삼요 장시간...
-
잘 시간이군 2
님들도 잘 주무시길
-
편돌이 경험있으신분들한테 물어봐용
-
안녕하세요. 오르비에서 1-1 대면 면접을 진행 중입니다. 현재 17일(금)까지는...
-
도전!
-
ㅇㅇ
-
급해요급해ㅜㅜ
-
ㅈㄱㄴ 윗글기원 2트임뇨
-
그.. 최적소법전 안 읽어봤나? 다른 강사들도 똑같이 헌법 조문 다루는 책 있을 텐데
-
고능아들 많아서 우럿서
-
평가원 만년 2라 공부 좀 해야 하는데
-
솔직히 ~~한다
-
문학 운문만 들을려고 하는데 어떤가요? 생감이랑 기출의 dna만 들을 생각입니다....
-
아 4
시대 재종 떨어지면 어떻게 해야할지는 생각을 안해봤네 ㅅㅂ
-
라인업이 생각보다 괜찮아짐 보강 잘한듯
-
감옥안가도경험ㄱㄴ
-
궁금한거 2
박광일과 이명학이 친했다고하던데 지금도 친할까? 아니면 이명학이 손절했을까?
-
힘들다고 많이 들었지만 전자공학과에서 4.0 근처의 학점을 받고 졸업한다면 다른...
-
일부 언론 보도를 보면 탄핵을 촉구하는 "시민"들의 집회 vs 탄핵을 반대하는...
-
개정시발점 스텝업 문제랑 수분감의 스텝1문제중에 뭐가 더 난이도가 높은 분류인가요?...
-
진영선택권에서 티모 등장
-
아무한테도 계정 안걸리고 이상한얘기도 안해야깃다 공부얘기만해야다
-
화1이라는 제가 사랑하는 과목이 작년에 사망하게 되어서 이과목을 살리는데 조금이라도...
-
ㄱㄱ
-
근데 건동홍 성적들고 고대 스나 붙나요 이러고있으면 11
꼴값이라고 보는사람 꽤 있었을듯
-
목동 시대 재종 0
국어 1 96 수학 2 90 영어 1 정법 3 80 사문 1 98 목동 시대 반...
-
경기도 안에서 호족이니 성골이니 뭐니 하는 뻘글은 왜 나올거냐 ㅋㅋㅋ 못배워먹은 놈 같다
-
겨울 방학 수학 0
고3이고 모고 4등급 나옵니다. 이번 겨울방학 동안 이미지 세젤쉬 개념이랑 쎈...
-
국어 문학의 감을 잡자! - 4. 갈래별 팁(현대시) 3
네 오늘이 국문감잡 마지막 시리즈입니다. 그동안 제 칼럼을 사랑해준...
-
샌즈아세요? 4
-
너무 이쁘네 8
-
잠드네 7~8시쯤에 잠들어서 새벽 2~4시에 일어남;;; 그냥 이대로 살아도 되나;;;
-
고2 모고 낮3인데 지금 시발점 수1수2 듣는데 수1 삼각함수 부분 하고있습니다...
-
실력 좀 쌓고 운이 따라줄 때 까지 n수 박으면됨
-
13살 어린데… 걍 야 아니면 제 이름 부름 믄제는 지적해주는 어른들이 없음 자주...
-
시대인재 인강 진짜 안하냐 하………..
-
설경제없나요 4
동기 ㅎㅇ
-
얼마전에는 왕호한테 까이고 오늘은 작은 현준이한테 까임 티모가 듀오하자고 하면...
-
라인 한급간 올리기 vs 그냥 지금 대학 다니기
-
기숙학원 탭 뚫었다 걸리면 죽어서 질문 못 받는다
캬
다른 곳에서 올려주셨던 9번짜리 문제중에 수학2 문제만 모으신건가요?
다는 아니고 좀 풀만한 문제들을 모았습니다!
근데 설맞이 N제 문제 제작한 분이신가요..??
저랑 설맞이랑은 전혀 관련 없습니다ㄷㄷ
표지 디자인에 설맞이 적혀있어서 물어봣어요
2468문제인줄 ㄷㄷ
1357님?
요거 답지는 없나요??11번 답이 안 나오는데 아무나 풀어주실 수 있나요..?
지나가다 답글 남겨요! f(x)와 tf(t) 간 교점의 개수가 t가 0과 3일 때 불연속이라고 하였으니
tf(t)라는 곱함수에 대해 살펴보아야 하는데 t는 0보다 작을 때, 0보다 클 때는 양수이니 t값을 이용하여 불연속점을 특정할 수 있는데, t가 0일 때 불연속이 되기 위해서는 x축 위에서 중근을 가져야 해요!(t(t)가 0이라 그렇습니다
f(x)가 중근을 가진다는 것을 알았으니 이를 이용하여 불연속점을 하나 더 구하자면 f(x)의 함숫값이 0보다 크거가 같다는 것을 이용하여 3에서 불연속이라는 뜻은 x가 3에서 중근을 가진다는 것을 알 수 있어요!(불연속이 되기 위해서 tf(t)의 값이 0을 찍는 지점이 있어야 하는데 f(x)는 중근을 가지므로 불연속지점인 x=3이 f(x)의 중근이 됩니다)
a(x-3)^2에다가 함숫값 조건 대입하여 구하고자 하는 것 풀어내면 답은 16으로 나옵니다!
엇 이제 봤네요 감사합니다!!