[이동훈t] 중등수학, 수학(고1) 이 결합된 문제 다시 보기 (+2023 수능 수학)
게시글 주소: https://hpi.orbi.kr/00062714712
2024 이동훈 기출
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은
2023 수능 수학 문제 중에서
중등수학, 수학(고1)이
결합된 문제를 다시 살펴보고,
수능 출제자들이
문제 난이도를 높이는
방식에 대해서 생각해보겠습니다.
수능 출제자들이
중간 이상 난이도의
문제를 만들 때,
자주 사용하는 방법이
바로 중등수학, 수학(고1)을
결합시키는 겁니다.
새롭게 출제 가능한 이론이
더 이상 없고 ...
거의 모든 유형의 문제가
출제된 이 상황에서 ...
출제자들이
(최대한 억지스럽지 않게)
변별력을 갖춘
문제를 출제하는 방법은
간접 출제 범위를
문제에서 비중 있게
다루는 것입니다.
이번 글을 시작으로
시간 역순으로
평가원 6월, 9월, 11월 시험과
중등수학, 수학(고1)의
결합에 대해서 꾸준하게
다뤄보겠습니다.
이 글의 거의 모든 내용은 이미
2024 이동훈 기출문제집의
본문 이론 파트와 해설집에서
다루고 있습니다.
(아래의 글은
풀이의 일부 또는 풀이 아이디어가
포함되어 있으므로
2023 수능 문제를 풀고 나서
읽기를 바랍니다.)
원주각의 성질 중에서
원주각의 크기가 같은 두 호의 길이는 같다.
를 사용해야 하는 문제입니다.
이는 중학교 도형 파트에서
배운 바 있고 ...
수능 삼각함수 단원에서는
최근 들어 처음 출제되었습니다.
이처럼 수능 출제자들은
처음 (또는 아주 오래간만에)
결합시키는 것을 상당히 좋아합니다.
그렇게 해야 자연스럽게
난이도를 높일 수 있기 때문입니다.
절댓값 계산은 수능에서
매년 나오고 있지요.
이 문제의 경우에는
다음의 필요충분조건을
평가하고 있습니다.
|A|=|B| (필충) A=B 또는 A=-B
위의 필요충분조건은
산술적으로도
좌표평면에서 도형의 관점에서도
증명할 수 있어야 합니다.
절댓값이 붙은 식의 변형은
수학(고1) 교과서와 쎈, ... 등을
풀면서 충분하게 학습해두길 바랍니다.
거듭제곱근에 대한
전형적인 응용문제입니다.
풀이과정에서
a/b 가 정수일 조건은
중학교 수학에서 배우는 내용이고,
수능 시험에서 상당히 자주
출제되는 내용이기도 합니다.
특히
a/b = ka/kb
와 같은 식 변형도 자주 묻고 있으므로
분수식에 대한 연산 역시
한 번 이상 정리해 두어야 합니다.
두 수의 합이 3의 배수인 경우와 아닌 경우
를 소재로 하는 문제들은 확통의
경우의 수, 확률 단원에서
즐겨 출제되었지만 ...
작년의 경우에는
수학1 수열 단원에서
이를 다루었지요.
그런데 사실 알고 보면
00년대 수열 기출 중에서
이에 대한 문제를 꽤 여럿
찾아볼 수 있습니다.
위에서도 언급한 바이지만 ...
수능 출제자들은
한 동안 출제 되지 않았던
내용들을 출제하여
난이도를 높이는 것을
선호하기 때문에 ...
(그래야 억지스럽지 않고
좋은 문제가 나오니까요.
공부한 범위에서 벗어나지 않는 것도
그 분들이 원하는 것이고요.)
초기 수능 문제라고 해서 풀지 않으면 ...
손해 보는 경우가 많습니다.
참고로 두 수의 합이 3의 배수인 경우는
0+0, 1+2
(이때, 0은 3으로 나눈 나머지가 0인 경우
1은 3으로 나눈 나머지가 1인 경우
2는 3으로 나눈 나머지가 2인 경우)
종종 세 수의 합이 3의 배수인 경우와
아닌 경우도 출제되므로 ...
이에 대해서 미리 연습해 두어야 겠습니다.
절댓값 계산을 다시 물어보았군요.
| x-a | = b (필충) x=a+b 또는 x=a-b
으로 둘 수 있어야 합니다.
그리고 수직선 위에서 해석하면
점 P(x)는 점 P(a)에서 거리가 b인 점 입니다.
이 문제가 까다로운 지점은 ...
붉은 색 칸 안에 들어간 두 개의 곡선을
그려서 풀기 시작하면 ...
케이스 구분 할 것이 많아지고
이는 실수로 연결될 가능성이 높아집니다.
따라서 두 개의 곡선
y=3^x+2 , y=log_2(x+4)
를 고정시키고,
두 개의 직선
y=n+t, y=n-t
를 움직이는 것이 낫겠지요.
요컨대
식 변형 후에 그림으로 풀 수 있는가 ?
를 평가한 문제라고 볼 수 있습니다.
그런데 이런 관점은
수능에서 생각보다 상당히 자주
출제되고 있습니다.
한 번 찾아보시구요.
좌표평면에서 점 P(a, b)에 대한 해석을
어떻게 할 것인지에 대한 문제입니다.
이 문제는
삼차함수의 그래프의 개형이
어렵다기 보다는 ...
좌표평면에서 움직이는
점 P(g(x), f(g(x))) 를
어떻게 해석할 것인지가
사실상 핵심입니다.
이 주제는
좌표평면과 연관된 단원에서는
매우 자주 출제되고 있기도 합니다.
(의식하지 못할 뿐이지요.)
좀 더 자세한 설명은
아래의 글을 참고해주시고요.
[이동훈t] 수능 난문 만드는 법 (+221130, 231122) 수학2, 미적분
이 주제는 2~3년 안에
수능에서 반드시 출제될 것이므로
여러분이 꼭 익혀두어야 합니다.
붉은 칸을 보고,
일차연립방정식을
떠올릴 수 있어야 하겠지요.
확률밀도함수에서는
워낙 자주 출제되는
유형의 문제이기도 합니다.
이 문제 역시
2 개 이상의 수의 합이 짝수(또는 홀수)가 되는 경우
를 다루고 있습니다.
이에 대해서는 워낙에 많은
기출문제가 있으므로
평소에 충분한 연습이 되었을 것입니다.
그리고 ...
숫자가 적힌 카드를 뒤집는 것은
90년대 기출에서 이미 다룬 소재이고 ...
그 문제와 짝수/홀수가
결합된 문제라고 보면 됩니다.
이 문제에 대해서는
나중에 분석글을 쓸 예정인데요.
중복순열, 중복조합과 연계된
함수의 개수를 구하는 문제는
이미 여러차례 출제된 적이 있습니다.
함수, 일대일함수, 일대일대응, ...
을 잘 구별할 수 있어야 하므로
고1 과정의 함수 단원은
매우 정확하게 이해하고 있어야 합니다.
급수와 중등 기하가 결합된 문제는
거의 매년 출제되고 있는데요.
위의 문제는
원의 정의, 이등변삼각형의 성질,
세 점이 한 직선 위에 있을 조건,
... 등을 소재로 하고 있습니다.
기하적 복잡도는
중간 난이도 정도 ... 입니다.
시험장에서는 본능적으로 보조선을 긋게 되지만
공부할 때에는
각각의 보조선이 왜 그어지는지에 대해서
정확하게 파악해야 합니다.
원과 관련된 성질,
사다리꼴의 넓이를 구하는 법,
직각삼각형의 닮음비와 넓이비, ...
등을 소재로 하고 있습니다.
위의 문제에 대해서는 아래의 글을 참고하시길 바랍니다.
[이동훈t] 부분에서 전체 보기 (+231128미적분) 미적분
합성함수에 대해서는
수학(고1)에서 배우게 되는데요.
합성함수를 포함한 방정식,
합성함수의 그래프의 개형 그리기, ...
등은 본문에서 직접적으로 다루지 않고
연습문제에서 간접적으로 다루고 있습니다.
이 문제는 평가원 기출에서
여러차례 다룬
합성함수의 그래프 개형을
소재로 하고 있고 ...
이에 대해서는 아래의 글을 참고하시길 바랍니다.
[이동훈t] 반복되는 풀이의 중요성 (+231130미적분) 미적분
삼각비, 피타고라스의 정리와
결합된 문제인데요.
삼수선의 정리에서는
직각삼각형이 여러개 나올 수 밖에 없고,
이 직각삼각형에
삼각비의 정의와 피타고라스의 정리를
적용한 것입니다.
직각삼각형이 나오면
바로 머릿 속에서
삼각비 또는 피타고라스의 정리를
적용할 생각을 할 수 있어야 합니다.
서로 닮음인 두 직각삼각형의 닮음비는
(사다리꼴 포함한 상황)
중학교 도형 파트에서 나오는데요 ...
이 주제는 수능에서 거의 매년
출제되고 있습니다.
이 문제에 대해서도 ...
추후에 분석글을 쓸 텐데요 ...
90년대 수능에서 자주 다루던
삼각좌표계를 소재로 하는
문제입니다.
삼각좌표계는 교육과정은 아니지만 ..
이에 관련된 성질들은
중학생, 고1 대상으로 하는
일부 문제집에서 다루고 있기도 합니다.
수능에서도 가끔 출제되기도 하고요.
자세한 얘기는 다음에 ...
풀이의 일부인데요 ...
위의 그림에서도 또 나오네요 ...
서로 닮음인 두 직각삼각형이요 ...
이처럼 이 기하적 상황은
거의 매년 수능에 출제된다고 해도
과언이 아닙니다.
사실 중학교 기하에서 배우는
기하적 상황은 꽤 다양한데요.
그 중에서도 수능에서 출제되는 것은
어느정도 제한되어 있다고 봐야 하겠지요.
여기까지만 봐도 ...
계속 중복되는 소재들이
보이시죠 ?
무엇은 중심에 두고
학습해야 할 지를
아실 수 있을 것으로 생각합니다.
.
.
.
이렇게 보면 ...
간접 출제 범위인
중등 수학, 수학(고1) 과정이
상당히 깊게 연계되는 것을
아실 수 있을 것입니다.
간혹 ...
직접 출제 범위는 잘 커버했는데 ...
간접 출제 범위에서
씽크홀이 뚫려서 ...
풀이가 잘 마무리 되지 않는
분들이 있습니다 ...
아직 2 ~ 3 등급에서
머물러 있다면 ...
간접출제 범위의
특정 단원, 주제가
약할 가능성이 매우 높습니다.
따라서 수능 기출을 풀면서
간접 출제 범위에 대해서도
의식적으로 정리해두시길 바랍니다.
저녁 타임도 열공하세요 ~!
ㅎㅍ ~!
2024 이동훈 기출
2024 이동훈 기출 실전이론 목록
2024 이동훈 기출 문항수, 페이지 수
수학 칼럼 링크 ( 2024 수능대비 )
아래의 5 타이틀은 판매 중입니다.
2024 이동훈 기출 + 개념 수학Ⅰ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 수학Ⅱ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 수학Ⅰ+수학Ⅱ 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 미적분 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 미적분 평가원 편 36,000원 (오르비 할인가 32,400원) 판매 중
아래의 2 타이틀은 전자책만 출시됩니다.
2024 이동훈 기출 + 개념 기하 평가원/교사경 편 4월 중
2024 이동훈 기출 + 개념 확률과 통계 평가원/교사경 편 4월 중
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
버벌진트의 후배가 되고싶다 이적의 후배가 되고싶다아악
-
올해 그 유씨삼대록 옥루몽 옥린몽 전부 다 강e분의 전체줄거리 5-6회독하고...
-
ㅋㅋㅋ
-
있으면 ㄹㅇ 지릴거같은데
-
팔로우해주실분 2
맞팔 안 받아요 팔로우해주세용 ㅠㅠ
-
모종의 이유로 헬기가 박살난 그림을 포함시킬까 말까 고민 중입니다. 여러분의 생각은 어떠신가요?
-
WLR @rollingloud K-FLIP
-
언제컴백해tv
-
님들이면 어디감? 이과분들만
-
서강대 경제분들 1학년 수업교재 영어로 되어있는거 있어요? 0
1학년부터 영어수업 해요?
-
이제 안주만 쳐무야지
-
통계 컴공 복전 3
-
이 라인 부터는 인강시간도 포함인거죠?
-
님들이면 어디감? 이과분들만
-
내가 선택과목 고르는 거긴 하지만 뭔가 단단히 잘못된
-
다른 할 것 X?
-
에듀셀파 노래 0
들을 수 있나요? 애플뮤직에 다운로드받아서 오프라인으로 듣는것도 불가능한가요? 여자캠퍼스입니다
-
.
-
라면보단 도시락이 나으려나....또이또이한가
-
ㅈㄱㄴ
-
만백 존나 떨어지는거 아님?ㅋㅋ
-
어디감?
-
왜 푸시는 거예요? 솔직히 실력 체크하려 푸시는 건 아는데, 그거 학부 안다녀본...
-
여기는 뭐가문제라 어제오늘 다섯명이 들어오는거임 정신아프다
-
화작 미적 지구 세지 화1 버림 이것만으로 올해 수능 성공적일거 같음
-
맥주는 먼놈의 맥주야 난 킹카콜라만 있으면 됨!
-
수시 평가도 학교별 수준 감안해서 더 공정하게 할 수 있을텐데 왜 안하지
-
잘되셨으면 좋겠다
-
아니면 점수가 어느정돈 돼야 들어갈수 있나용
-
21 22 23 24 25 수능 ㅠ
-
본인 예비 고3이고 오늘 방학하고 내일부터 새벽 6시반에 일어나서 국어스타트...
-
고대 붙나요? 2
고대 환산점수로 문과 629점인데 붙을 수 있는 과 있나요? 약 펑크 고려해서요
-
본인이 설대 18
AA 뜰 것 같아서 매일 발뻗잠하면 ㄱㅊ ㅋㅋ ㅇㄷㄴㅂㅌ
-
요즘 수능도 생1 지1이 인구비율 제일 큰가요?
-
낚시도 개념을 꼼꼼히 안다해서 안당하는게 아니라 실모양치기에서 여러번 비슷하게...
-
210퍼 머노.. 심지어 잡코인은 안 사고 깔끔하게 비트코인만 사놨네
-
어그로 ㅈㅅ한데 저녁 뭐먹을까요? 일단 생각나는건 라면 또는 도시락
-
국어 김승리 아수라일지라도, KBS 수학 X 영어 X 사문 임정환 림잇 경제 이형수...
-
23수능때도 수학과 과탐 하나를 제외한 모든 과목이 다 노베이스였습니다. 현역 미적...
-
삼수생 특: 현역으로 대학간 친구가 전역하고도 몇달뒤에 군대감
-
조심스럽게 생각해야 하는 게 자교 로스쿨 학생 중 자교 학부 비율이 50프로 내외고...
-
오르비엔 확실히 유전을 뛰어넘어서 대학 가시는분들이 많은듯 1
그만큼 노오력도 많이했단거겠고 오르비 자체가 수능공부에 동기부여가 됐다는 방증이기도...
-
박선오 백호 윤도영 최수준 김연호 한혜선 김연호 정석준 진짜 이곳저곳 많이 다녔네
-
국어 인강추천 0
솔직히 말하자면, 예술 중학교를 다니면서 공부와는 거리가 멀었어. 성적은 나쁘지...
-
밸런스게임 2
무조건 만점이 나올때까지 수능을 봐야하는 상황 선택과목 자유 확통 사탐 ㅆㄱㄴ 1....
-
자 이제 누군지 모르겠죠?
-
이번 수능 3중간 밖에 안 나오긴 했는데 지수, 로그 함수에서 막혀버림... 풀다가...
-
무안공항.. 1
그 배랑 다르게 빠르게 잊혀지는듯ㅋㅋ
-
수능 1 토익 945인데 ㅂ=합격증 나오면 과외 구하고 싶음 라인은 홍대 경영...
첫번째 댓글의 주인공이 되어보세요.