[박수칠] 역함수의 미분법 이해하기
게시글 주소: https://hpi.orbi.kr/0004590637
수학영역 A형에 비해 B형에서는 다양한 미분법/적분법을 배우게 됩니다.
그 중에 살~짝 어렵고 헷갈리는 것이 '역함수의 미분법'인데요,
이 글을 통해 간단명료하게 설명해드리겠습니다.
1.일단 역함수의 미분법은
(1) x=f(y) 꼴의 함수를 미분하기 위한 것입니다.
(2) 그래서 역함수의 도함수를 구하는데 이용되죠.
2.역함수의 미분법에 관련된 공식은 다음 두 가지가 있습니다.
각각의 증명은 다음과 같습니다.
(1) 의 증명
(2)의 증명
3.그럼 공식 2-(1)을 이용해서 도함수를 계산해봅시다.
(1) 주어진 함수를 x=f(y)의 꼴로 표현하기 위해 양변을 n제곱합니다.
(2) 양변을 y에 대해 미분합니다.
(3) 를 이용하기 위해 양변을 역수로 바꿉니다.
(4) 따라서 주어진 함수의 도함수는 다음과 같습니다.
(1) 역함수를 구하기 위해 x, y의 위치를 바꿉니다.
y=f(x) 꼴로 정리하지 않아도 위 식은 이미 역함수입니다.
(2) 양변을 y에 대해 미분합니다.
(3) 를 이용하기 위해 양변을 역수로 바꿉니다.
이 식이 바로 역함수의 도함수입니다.
역함수 를 y=f(x)의 꼴로 표현하기 어렵기 때문에
위의 도함수를 굳이 x에 대한 식으로 나타낼 필요는 없습니다. 또한
역함수의 그래프 위의 점 (3, 1)에서의 미분계수를 구하고 싶으면
이 도함수에 y=1을 대입하면 됩니다.
4.의 의미
앞에서도 언급했다시피 함수 y=f(x)와 그 역함수가 y=g(x)가 모두 미분가능하면
이 성립합니다. 이 식에서 (x, y)는 역함수 y=g(x) 위의 점을 의미합니다.
만일 점 (a, b)가 역함수 y=g(x) 위의 한 점이라면 다음의 식이 성립하겠죠.
이때, g'(a)는 역함수 y=g(x) 위의 점 (a, b)에서의 접선 기울기,
f'(b)는 함수 y=f(x) 위의 점 (b, a)에서의 접선 기울기를 의미합니다.
따라서 위 식은 두 접선의 기울기가 서로 역수관계임을 의미하겠네요.
그럼 문제 하나 풀어봅시다.
이 문제는 2010학년도 9월 모평 가형 27번 문제입니다.
f'(a)와 g'(a)를 구하는 문제인데, 역함수의 도함수는 구할 필요가 없고
다음과 같이 를 이용해서 역함수의 미분계수만 구하면 됩니다.
(1) f'(a)의 계산
함수 f(x)의 도함수 으로부터
(2) g'(a)의 계산
g(a)=b라 하면 로부터
(3) 답 계산
g(a)=b로부터 f(b)=a이므로
이다. 이를 이용하면
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
일주일이 수업일 기준인가요 복영 들어온날 기준인가요
-
제가 계정을 동생이랑 같이 쓰는데 그러다보면 다른 기기에서 사용하는 건데 여러...
-
천재는 없음 0
잇다쳐도 굳이 신경 쓸 필요가 없음
-
점근선이랑 일차함수만 있으면 만들 수 있을거 같은데 변형이 용이할듯
-
그런데 수시 합격하신 분 왈 정시합격자 두분이 톡방에 들어오셨대요. 선지망 대학...
-
하도 사람을 기억못해서 나이랑 할말써주면 그걸로기억하겟음
-
다들 어떤식으로 하시나요 도와주세요...
-
교육청 안 풀어서 까먹음..
-
윤성훈 작년 개념만 완강되어있는데 이걸로 1회독 하고 기출 선지정리 하면 어느정도...
-
3모 미적 3
5모 확통 6모 기하
-
오늘도 공부는 안 하고 핸드폰으로 쇼츠만 보고 있었는데 유독 예체능 영상이 많이...
-
일본 여행도 가고 중국 상하이도 가고 토익 900점 이상도 달성해보고 수능도 재미로...
-
근데 뭔가 전 2
남자약사<<하면 뭔가 좀 뽀다구가 안나는거 같은데 저만 이럼? 뭔가 남자가 약사라는...
-
예쁘고 좋은데 펌 비용이 만만찮네 허..
-
중건시경임 6
이과기준
-
갑자기 생각난 건데 책상 크기가 크게 문제가 되진 않나요?.. 두각 책상 좀 작던데
-
왜 클릭?
-
1차추합 가능할까요?
-
고등학교ㅇㅈ 5
나<< 고졸인데 왜 100퍼인지
-
뻘글 좀 정리함 2
ㅇㅇ
-
늦버기 1
잘잤다
-
모닝ㄷㅂ 12
-
알고 살아요…
-
고등학교 ㅇㅈ 2
?
-
생각해놓은 걸로는 실모생사결 N제 마라톤 천하제일 물스퍼거 선발대회 등등 있음
-
우리 학교 은근 높네..
-
뀨뀨 5
뀨우
-
사탐런 이득 8
올해 물지 88 80 나왔는데 과탐 3%가산 기준으로 사탐런 했을 경우 대강...
-
포카도 슬기 좋아해서 슬기만 다 모았음 근데 번장 보니까 슬기 포카 풀세트 3만원대에 팖.. 에휴이
-
고등학교 ㅇㅈ 7
-
포카살말 8
탐나는데
-
나만 그렇게 느끼나
-
자꾸 문장 읽다가 힘 빼라는데 실전에서 이게 가능함??… 처음 읽는 글을 어디가...
-
예전부터 항상 생각해 왔던...
-
트럼프, 캐나다·멕시코·중국에 고관세 행정명령… 4일부터 시행 2
도널드 트럼프 미국 대통령이 1일(현지시간) 캐나다·멕시코·중국에 고율 관세를...
-
올해 복습은 해야 되는데 뭐로 할까 추천 부탁해요
-
연애는하고싶은데 2
여자랑DM하는게너무귀찮음 어캄
-
얼버기 9
.
-
과외쌤 진짜 좋아했는데.. 근데 가능성이 없는게 맨날 나한테 야로 부르거나 성까지...
-
수감중인내친구가벌어월이천오백
-
단국대처럼 서울 밖으로 이전을 해버리지 않는 한 사회적인 인식으로 자리잡힌 라인이...
-
얼버기 2
-
아침 롤토체스 0
ㅇㄱㅈㅇ~
-
애깅이 일어나또 3
아웅 졸려
-
와 살 ㅈㄴ 찜 10
입대한지 3달밖에 안 지났는데 5키로 찜 ㅋㅋㅋㅋㅋ
-
작년 수능 1주일 전이 떠올라서 손이 벌벌 떨리는중 1
그때 하루하루가 불안해 죽는줄 알았는데 가끔 무의식적으로 떠올라서 불안해지는거보면...
-
도대체가 말야.. 세상의 근원을 알아내는데 왜 관심이 없지 5
이게 같은 인간이 맞나
-
쉐도잉을 추천하시던데요 빠른효과를 보려면 뭐가좋을까요???
-
드릴 풀까 말까 2
작년에 뉴런했으니까 바로 할까요 아님 뭐라도 하나 더 풀고 할까요 으으음
라이프니츠 미분법의 장점이죠ㅋㅋdy/dx를 분수꼴(?)로 생각할 수 있다는!
그렇죠! 합성함수의 미분법(연쇄법칙), 매개변수로 표현된 함수의 미분법, 매개변수로 표현된 함수의 이계도함수, 더 나아가면 치환적분도 분수로 간주할 수 있구요~ ^^
감사히잘보고갑니다
감사합니다~~^^
명쾌합니다!!!
Dy/dx를 어떻게 읽죠? 디엑스분의 디와이거 아니라던데여
그냥 디와이디엑스 라고 읽으시면됩니당~