수능완성 107쪽 8번 해설(2부)
게시글 주소: https://hpi.orbi.kr/00038365878
일단 문제 다시 올릴게요
아니 그래서 하디-바인베르크 집단이 뭔데?? 라고 물으신다면
일단 A : a가 2 : 1 혹은 (2/3 : 1/3) 이라고 해봅시다
A가 우성이에요
고러면 AA : Aa : aa 개체수 비가
4 : 4 : 1 로 나타는 집단이
하디-바인베르크 집단이에요 멘델집단이라고도 하구요 ㅋㅋ
즉 A : a가 p : q 일때 (확률일 수도, 간단정수일수도 있는 비)
AA : Aa : aa 개체수비가
p^2 : 2pq : q^2 으로 나타는 집단이
하디-바인베르크(멘델) 집단입니다
그렇지 않을경우 비멘델집단이라구 하구요
아하! 알겠어요
그러면 멘델집단일 경우 빈도비를 알면 모든 유전자형 개체수비는 다 알 수 있겠군요?!
그리고 멘델집단일 경우 유전자형 개체수비의 일부 2개 이상만 알아도 빈도비를 역추적할 수 있겠군요?!
맞아요 저는 이렇게 배웠답니다
(ㅊㅅㅈ선생님, 기해분 디캎팀, 오르비 여우별쌤 사랑합니다)
그럼 비멘델 집단이면 어떡하죠??
비멘델 집단에선 개체수비를 알아도 빈도비는 구하지 못하는 것 아닌가요???
다 방법이 있지요
이럴 땐 기본개념을 이용해야 합니다
자 1부에서 빈도가 뭐라 그랬죠??
빈도는 모든 유전자를 쓰깠을 때
손으로 하나를 뽑으면 나올 확률이라켔죠??
AA 에서는 A가 2개 있네요
Aa에서는 A가 1개 a가 1개 있네요
aa에서는 a가 2개 있네요
아하 이제 알았어요!!
비멘델에서 AA : Aa : aa 유전자형 개체수비가
3 : 6 : 1 로 나온다면
A의 빈도는 전체 10개체수의 전체 유전자 수인
20(개체수 하나당 대립유전자는 2개, 그래서 10 곱하기 2)분에
3곱하기 2(AA에는 A가 두 개)
더하기 6곱하기 1(Aa에는 A가 한 개)
해서 12/20=6/10 이군요!!!
그럼 a의 빈도는 4/10 이군요!!!
이거를 일반화하여서요
이렇게도 할 수 있을 것 같은데요????
AA : Aa : aa는요 개체수비가 a대 b 대 c 로 주어졌을 때
A : a 빈도는 a+b/2 : c+b/2 라고 나타낼 수 있을 것 같아요!!
이제 비멘델 집단에 대해서도 일반적인 대응법이 생겼네요!!!
저는 이렇게 배웠습니다
(여우별 선생님 진짜 사랑해요)
그럼 이제 문제 봅시다
아하 여기서는 집단 (가)와 (나)가 있구요
그 두 집단의 개체수는 (나)가 (가)의 2배이네요
나와있는 조건들로 어느 집단이 멘델집단인지, 유전자 T와 T'의 우열성, 유전자형 개체수비를 각각 구하면 문제가 풀리겠네요???
네 맞아요 그럼 시작해 보면,,,
모든 하디-바인 문제는 기본 세팅이 있어요
이거 안하면 못 풂;;
일단 생1 베이스가 있다면 이거 이해 못하는 사람은 없음
근데 이 문제는 우열이 안나왔잖아요??
저는 이 문제를 풀다보니 그냥 T와 T'를 우와 열로 퉁치고(뭐가 우인지 뭐가 열인지 모르는 상태)
우열성을 찾으면 그때 끼워넣는 방식이 좋드라구요
물론 실전에선 그렇게 안 할거임
-아 적다보니 현타오네요 괜히 일을 키운느낌-
일단 저 파란 박스를 해석 해볼게요
어?? 한 집단의 대립 유전자 수??
그거 전체 개체수에 그 유전자 빈도수 곱하면 되지 않음??
당연한 거에요 이거 못 생각하면 안 됨
가의 열성빈도 : 나의 열성빈도가 1 : 2 라는 조건이 동치로 나옵니다
그 다음 조건 해석해봐요 우리
이러면 다음과 같은 식이 나오겠죠???
이제 썼던 세팅에 다시 끼워넣어 볼게요
이제 마지막 조건 해설할게요
귀찮으니 사진올리는 거 자제해야지(지금 찰칵소리 러셀에서 엄청난 민폐임;;;)
유전자형이 TT'인 개체와 T'T'인 개체들을 합쳐서 T의 빈도를 구하면 (가)는 3/10이고 (나)는 2/9 이라네요!!
TT'인 개체와 T'T'인 개체들을 합쳐서 T의 빈도를?
어떻게 구하져??
그러면 뭐다?? 기본개념에 충실해보자구요
아하!!! TT'엔 T가 하나 T'가 하나
T'T'에는 T'가 두개이군요!!!
그러면 이제 알겠어요!!!
일단 (가)에서는 T가 있는 만큼 T'도 TT'라는 개체수에 있는 거니깐 TT'는 6/10 이네요!!! (3/10곱하기2)(분모는 TT'+T'T')
그러면 T'T'는 4/10 이네요!!!!
그럼 (나)에서는 T가 있는 만큼 T'도 TT'라는 개체수에 있는 거니깐 TT'는 4/9이네요!!!
그럼 (나)애서는 T'T'는 5/9 이네요!!!
네, 저는 이렇게 배웠답니다
이제 (가)부터 간단 정수로 써봅시다
어어??? 근데 있잖아요 우리가 T가 우인지 열인지 모르잖아요
그래도 일단 TT'는 이형접합이니 여기다가 6을 쓰라는 것은 알겠네요
생2는 귀류의 과목입니더
이제 (가)가 멘델집단이라 치면
땡 탈락입니다
왜냐면 6 : 1 이잖아요 그죠??
그러면 멘델집단이라 치면
36 : 12 : 1 이어야 하는데
어느 경우도 4 : 6 : 몇
혹은 몇 : 6 : 4 를 만족하지 않아요
아하 그럼 (나)가 멘델집단이 되겠네요
그리고 (나) 까지 개체수를 쓰고 5 : 4 : 몇
혹은 몇 : 4 : 5를 찾으면 되네요??
아하!! T'가 우성이었군요!!!!
네네 이제 다 풀었어요
발문에서 우성표현형수컷과 이형접합 암컷이 교배하여 우성표현형을 가질 확률은??
이거 1에서 열성 빼면 되어요
1에서 열성나올 확률인 1/2(어미에게서 T가 나올 확률) 곱하기
q/1+q(우성표현형아비에게서 T가 나올 확률인데 이거마저 설명해버리면 넘 길어짐,, 저에게 해설해달라 쪽지주셨던 분 이거는 알리라고 믿어요)를 빼가지고 하면 정답은 1번이 나옵니다
근데 문제는 (가)집단이에요
여기서 유전자 빈도랑 유전자형 개체수비의 일부가 나왔잖아요
그러면 어??
아까 그 기본개념을 이용하여
(가)집단의 전체 개체수비를 구할 수 있겠네요???
어디보자 비워져 있는 개체수를 미지수 a 라고 잡고
T' : T 가 6 : 1 이면,
설명은 사진으로 갑니다
아휴 힘들어 정확히 한시간 걸렸어요
덕코좀 많이 주세요
0 XDK (+11,010)
-
10,000
-
10
-
1,000
-
트럼프 뭐하냐고
-
오늘은 이거
-
[속보] 캐나다도 즉각 보복관세…미국산에 25% 부과 3
[서울경제] 캐나다도 즉각 보복관세…미국산에 25% 부과
-
공부한다
-
일주일이 수업일 기준인가요 복영 들어온날 기준인가요
-
천재는 없음 1
잇다쳐도 굳이 신경 쓸 필요가 없음
-
점근선이랑 일차함수만 있으면 만들 수 있을거 같은데 변형이 용이할듯
-
그런데 수시 합격하신 분 왈 정시합격자 두분이 톡방에 들어오셨대요. 선지망 대학...
-
하도 사람을 기억못해서 나이랑 할말써주면 그걸로기억하겟음
-
다들 어떤식으로 하시나요 도와주세요...
-
윤성훈 작년 개념만 완강되어있는데 이걸로 1회독 하고 기출 선지정리 하면 어느정도...
-
3모 미적 3
5모 확통 6모 기하
-
오늘도 공부는 안 하고 핸드폰으로 쇼츠만 보고 있었는데 유독 예체능 영상이 많이...
-
일본 여행도 가고 중국 상하이도 가고 토익 900점 이상도 달성해보고 수능도 재미로...
-
근데 뭔가 전 3
남자약사<<하면 뭔가 좀 뽀다구가 안나는거 같은데 저만 이럼? 뭔가 남자가 약사라는...
-
예쁘고 좋은데 펌 비용이 만만찮네 허..
-
중건시경임 6
이과기준
-
갑자기 생각난 건데 책상 크기가 크게 문제가 되진 않나요?.. 두각 책상 좀 작던데
-
왜 클릭?
-
1차추합 가능할까요?
-
고등학교ㅇㅈ 5
나<< 고졸인데 왜 100퍼인지
-
뻘글 좀 정리함 2
ㅇㅇ
-
늦버기 1
잘잤다
-
알고 살아요…
-
고등학교 ㅇㅈ 2
?
-
생각해놓은 걸로는 실모생사결 N제 마라톤 천하제일 물스퍼거 선발대회 등등 있음
-
우리 학교 은근 높네..
-
뀨뀨 5
뀨우
-
사탐런 이득 9
올해 물지 88 80 나왔는데 과탐 3%가산 기준으로 사탐런 했을 경우 대강...
-
포카도 슬기 좋아해서 슬기만 다 모았음 근데 번장 보니까 슬기 포카 풀세트 3만원대에 팖.. 에휴이
-
고등학교 ㅇㅈ 7
-
포카살말 8
탐나는데
-
나만 그렇게 느끼나
-
자꾸 문장 읽다가 힘 빼라는데 실전에서 이게 가능함??… 처음 읽는 글을 어디가...
-
예전부터 항상 생각해 왔던...
-
트럼프, 캐나다·멕시코·중국에 고관세 행정명령… 4일부터 시행 2
도널드 트럼프 미국 대통령이 1일(현지시간) 캐나다·멕시코·중국에 고율 관세를...
-
올해 복습은 해야 되는데 뭐로 할까 추천 부탁해요
-
연애는하고싶은데 2
여자랑DM하는게너무귀찮음 어캄
-
얼버기 9
.
-
과외쌤 진짜 좋아했는데.. 근데 가능성이 없는게 맨날 나한테 야로 부르거나 성까지...
-
수감중인내친구가벌어월이천오백
-
단국대처럼 서울 밖으로 이전을 해버리지 않는 한 사회적인 인식으로 자리잡힌 라인이...
-
얼버기 2
-
아침 롤토체스 0
ㅇㄱㅈㅇ~
-
애깅이 일어나또 3
아웅 졸려
-
와 살 ㅈㄴ 찜 10
입대한지 3달밖에 안 지났는데 5키로 찜 ㅋㅋㅋㅋㅋ
-
작년 수능 1주일 전이 떠올라서 손이 벌벌 떨리는중 1
그때 하루하루가 불안해 죽는줄 알았는데 가끔 무의식적으로 떠올라서 불안해지는거보면...
-
도대체가 말야.. 세상의 근원을 알아내는데 왜 관심이 없지 5
이게 같은 인간이 맞나
내년에 의대 뱃지 다셔야지요
의대 가즈아!!!
저도 올라온 거 보고 풀어봤는데 진짜 이상하더라고요
그쵸? ㅋㅋ
와 정성 무야
정성추좀 해주세요 ㅋㅋ
아 왜 내 글보다 좋아요 많지 ㅡㅅㅡ
닉변했음? ㅋㅋ
원상복구네 ㅋㅋ