학생들이 틀리기 쉬운 내용 3번째!
게시글 주소: https://hpi.orbi.kr/00033053259
전에 제가 쓴 글을 칼럼이라고 좋게 얘기해주셔서 감사합니다!
칼럼은 아니고 참고용이지만! 간단한 칼럼으로 생각하시고 편히 읽어 주세요~
궁금하거나 이해가 안되시는게 있으신 분은 언제든지 쪽지 남겨주시면 답장 드리겠습니다!
0 XDK (+550)
-
500
-
50
-
야발 0
레어 누가 가져감
-
ㅌㅅㅌ 1
/
-
ㅅㅂ이 왜 딮기 애기할땐 다 숨어있다가 레어만 호시탐탐 노리는데 진짜 신드라만은 뺏지말아라
-
못하나..?ㅠㅠ
-
라유 저격합니다 2
1000만덕을 모으겠다는 표면적인 목표를 세워 오르비언이 한마음 한뜻으로 보태준...
-
레어 찍어내서 부동산 마냥 설거지 실패 되나 물린 것 같기도
-
ㅇㅂㄱ 2
-
덕코좀 1
뺏고싶은게 있음
-
ㅠㅠㅠ
-
레어부자 1
으하하
-
관리자님 4
이거그냥 주식처럼 9시부터 15시 30분까지 거래 할 수 있도록하죠? 호가창도 만들자
-
진심입니다 생전에 만든 네이버웨일도 30만덕을 넘어가고
-
비상 2
레어 똥값됨
-
나는 아직 음료 안만들긴하는데 구냥도넛만포장하고 매장청소만하면됨 설거지도...
-
고2 9모는 85점이였구요.일리를 듣고 신택스 가는 게 나을까요 아니면 바로 신택스...
-
대재앙 ㅋㅋㅋㅋㅋ
-
솜씻너 상태됨 0
우리 허수허수가 신드라 추출할때도 이정도는 아니었어 시3발
-
왜 확인창 안띄움
-
레어방어전시작 1
으악
-
나이는 05고, 현재 설여대 정보보호 다니다가 휴학했음. 걍 설여대 다녀??
-
흐흐흐 0
다내꺼야
-
그립읍니다 5
-
+1 하면 어디까지 올릴 거 같음?
-
야한거없는거,,
-
아직승인안된게 6개 더있는데 어캄
-
적당한 애니프사레어 사고싶었는데,,,
-
라유 저분은 11
저럴려고 1000만덕 오르비언한테 받은거구나
-
자퇴 처리 완료 3
결코 나쁜 기억은 아니었음을
-
빚져서라도 제가 가질게요
-
자작은 아니에용 풀이 ㄱㄱ
-
떡상 미쳤네 ㅋㅋㅋㅋㅋㅋㅋㅋ 아니 왤캐 많이 올라요
-
레어투기 무섭다 0
어제 내가 몇천덕억 산 파랭이 이젠 내 전재산으로도 못 사다니
-
장전완료
-
저거 필요없는데
-
케플러 레어 난빌런님한테 샀는데 저도 갖고있고 난빌런님도 갖고있고...
-
오르비의 거래소화
-
아냐는 안 놔준다 10
-
왜 저분은 아냐 뺏기셨지
-
캬캬캬 3
레어로 4만덕 벌기
-
관리자님 감사해요
-
??: 설마 이것도 모르고 뉴런을?... 됐어....시발점으로 가세요 (3초...
-
아 풀렸다 3
무섭네...
-
자꾸 내 아냐 가져간다고오 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
아침부터 부재중 전화 3통이나 와있어서 보니까 어? 발표했네...?중냥아 다음생에 보자
-
다들 굿모닝~ 5
-
그냥 악착같이 모아서 개비싼거 사야할듯
-
아냐야 고맙다
-
아니 내 레어가 5
올해 교육청인가요?
고3 10월 학평입니다!
그래서 어떻게 푸는 건가요
sinx=루트(1+cosx)에 파이, 2/3 파이, 4/3파이를 대입해서 값이 같을때의 x값을 택해주면 됩니다!
예를 들어 x값에 파이를 대입한다치면 sinx=0
루트3(1+cox)=0 이므로 x가 파이일때는 선택 가능합니다!
그 파이값은 직관인가요..? 시험때 다시 저 문제를 보면 그렇게 생각을 못할거같은데 ㅋㅋㅋ ㅠ 왜 파이 2/3파이 4/3파이인지 설명해주실수잇을가요
cosx=-1일때 x의 값이 파이입니다!
그리고 나머지 값은 cosx값이 -1/2일때 입니다
아 제가 궁금했던 건 그 코사인 값을 특정할 수 있는 이유가 무엇인지가 궁금했었던 거였어요 ㅎㅎ,, 그냥 구하다보면 답이 나오는건가요.......
네 방정식을 풀다보면 나옵니다 ㅠㅠ
sinx/1+cosx=tan1/2x 으로 바로 바꿔서 푼 1인..
삼각함수 합성으로 푸셔도 됩니다! 어떤 방식으로 푸는건 중요하지 않습니다! 올바른 과정으로 풀었는지가 중요한것입니다!
헐!! 그래서 저 문제에서 시간이 엄청엄청 오래 걸린 거군요 ㅠㅡㅜ
1번 첫째문단 이유 설명좀 해 주실 수 있을까요 ㅠㅠㅠ
a<b 일때 즉 -2<1일때 제곱을 못합니다. 1번 경우는 항이 2개일때에서 3개로 늘었다고 생각하시면 됩니다!
양변을 재곱한다는 것의 원리는 a<b이면 양변에 같은수 a와 b를 곱하여 aa<ab, ab<bb이므로 aa<bb가 되는 겁니다! 여기서 a,b의 부호를 고려해줘야 하는 겁니다!
0<x^2<4 인 이유를 모르겠는데.....
-2<1이면 말씀해주신대로 4<-2 , -2<1 이므로 4<-2<1 은 말이 안 되니까 제곱을 못한다고 하신건가요???
근데 0<x^2<4은 어찌 나온 건지 모르겠습니다ㅠㅠㅠ
-2<x<1은 -2<x<=0 또는 0<x<1입니다.
-2<x<=0 또는 0<x<1 는 0<=-x<2 또는 0<x<1입니다.
0<=-x<2 또는 0<x<1는 이제 모두 양수니까 0<=x^2<4 또는 0<x^2<1입니다.
0<=x^2<4 또는 0<x^2<1는 수직선에서 연립을 하면 0<=x^2<4가 되므로
-2<x<1은 0<=x^2<4이다 라는 결과가 나온것입니다!
원리를 알고 싶어하시는 모습이 아주 멋있습니다!
호훈t 해설강의 보세요 저거 다 설명해줌
답글이 더 이상 안 달리네요
깔끔하고 친절한 답변 너무 감사합니다!!!!!!
이제 이해가 가네요 !!
넵! 궁금하신거 있으시면 언제든지 물어보세요!
저렇게 풀고 답안나와서 당황했는데 그냥 그 근 나온더 다넣어보고 되는거 더했는데 그렇게 푸는건가요?
네 맞습니다!
저게 그 무연근인가보군요... 주의해야겠어요
감사함다
나형인데 안봐도 되죠? ㅋㅋ
이걸 응용해서 문제를 내지는 않지만 풀이중에 사용해야하는 경우가 나올수가 있어서 봐놓는게 좋아요!
3점 방어했다 개꿀
역시 생존왕 이근
저도 답안나와서 첨에 당황.. 덧셈정리로도 풀수 있더라고요