공간도형 ㄱㄱ
게시글 주소: https://hpi.orbi.kr/0003122500
평면 x로부터 거리가 각각 4인 점a,b가 있다. 점a를 중심으로 반지름의 길이가 2인 원O이 있을때 점b에서 이 원에 그은 접선에서의 접점을 p라하자.
이때 점p에서 평면 x에 수직으로 내린점을 h라 할때 hp =3이다.
점 a,b사이의 거리의 최솟값을 L이라 할때 L^2 = q/p이라 할때 p+q=?
(단, 점b와 원O는 같은 평면위에 있고 p,q는 서로소)
BGM 출처 : [링크]
유튜브에서 퍼온 BGM(영상)입니다. BGM이 버벅거릴 경우, 잠시동안 일시정지 후 재생해 주세요. [유튜브 브금 넣는 법]
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
[속보] 트럼프 ″자동차, 반도체, 의약품 관세도 검토 중″ 2
[파이낸셜뉴스]
-
자꾸 쓸데없는 상상만 ㅈㄴ해서 공부 집중 엄청 깨짐..
-
6번 같은 트랩 수능&모평에 등장했으면 또 치고박고 싸웠겠군.
-
[속보] 백악관 "美철강·알루미늄 25% 관세 시행 내달 4일부터" 1
[서울경제] [속보] 백악관 "美철강·알루미늄 25% 관세 시행 내달 4일부터"
-
시발점 다음에 2
시발점 워크북 풀고 바로 뉴런 가도 ㄱㅊ나요..시발점 뉴런 사이에 유형코드...
-
담임쌤과 컨설쌤의 환상콜라보로 정시에서 3최초합 받았는데 제가 정말 쓰고싶었는데...
-
나는야 사기꾼
-
ㄷㄷㄷ...
-
오늘 밤새는사람 0
ㅈㄱㄴ
-
ㅈㄴ현웃터지네 ㅋㅋㅋㅋㅋㅋ
-
문과기준입니다 거의 10년전에 나온 시발점 말고 올해 새로나온 개정 시발점 사도 되는건가요?
-
강제 기상 2
직후 소파 나르기 살려다오
-
담배 피지마 1
냄새 빼고와 ㅈ같아
-
오늘 학교에서 0
수강신청 어떻게하는지 알려준대여 기대된다
-
내 스메랑 내 플래너 차이 ㅈㄴ 욱김 ㅅㅂ ㅋㅋ ㅠㅜ 3
걍 ㅈㄴ 욱딤 ㅅㅂㅋㅋㅋ이게 뭐야 ㅜㅜ 심지어 같은 모트모트 플래너여셔 더 ㅈㄴ 웃김 ㅋㅋㅋ ㅠㅠ
-
엉덩이한입크게와앙 13
-
헬스터디 이채연 3
머지;; ㅈㄴ예쁘다
-
수강신청 시댕 2
한문(온라인)+중국어 할라 했는데 한문 놓쳐서 독일어+중국어 됨 :;; 독일어 ㅈㄴ 생소한데
-
여르비 24
수강신청 올클 할뻔 ㄲㅂ
-
내 옯생 너무 클린해
-
오르비 특 11
아무 의견도 내지 않고 헉 헉만 치고 구경만 해도 무조건 호감 오르비언 됨ㅋㅋ
-
미친놈인가
-
하루만에 제 생각보다 훨씬 많은 분들이 책을 봐주셨습니다 아침에 혹시나 싶어...
-
뭐하나없어서면제임ㅇㅋ?
-
과외러 출근 0
오늘은 퇴근 못하는날 ㅠㅠ
-
그만 알아보도록하자 다 팔면 2793422덕이라고 한다
-
업그레이드 했습니다, 궁극기 (전 10장으로 끝내는 한국사) +이벤트 0
안녕하십니까 Emit Light입니다. 요거 기억이 나실지 모르겠습니다. 여튼 저...
-
그저께 물2는 배기범 개념완성 생2는 백호 개념완성 샀는데 이거보다 괜찮은 사람 혹은 교제 있나요
-
수1이고 전반적 난이도는 쉬웠음 마찬가지로1~4번은 어삼~11 그 이후는 12번...
-
소신발언) 의대생들 10
ㅈㄴ 불쌍함 ㅈ빠지게 노력해서 갔을텐데 엄
-
출근하기싫다 1
아
-
ㅁㅈㅇ이 고소한 전설의 포스터
-
일반고현실 0
내가 다닌 학교는 지방에 흔한 학교였음 공부를 안하는 분위기가 다른학교에 비해 좀...
-
아오오르비 1
서버왤케아파
-
천국을 발견한거 같아요 19
바나나우유가 이렇게 많이...?
-
D-275 시작 4
다들 안녕
-
여기는 입시커뮤지 정치커뮤가 아니에요 ㅠㅠ 모두들 보추 vs 퍼리 vs 쇼타퍼리...
-
수학 노베인데 지금 기현쌤 파데랑 킥오프 수1 병행중인데 개념은 이해 했는데 단원...
-
레어사세요...
-
"이재명 개XX 해봐"..인권위에 방패들고 등장한 ‘캡틴 아메리카' 3
[파이낸셜뉴스] 윤석열 대통령 등 ‘내란죄 피의자’들의 방어권 보장 등을 담은...
-
野 “광주 5·18 광장서 감히”… 탄핵 반대 집회 불허 논란 6
강기정 시장·박지원 “용납 못 해” 전한길 “민주주의 근간 깬 망언” 윤석열 대통령...
-
헌법재판관 출신 인권위원장 "헌재 믿지 못한다는 국민 50%" 1
(서울=뉴스1) 이기범 권진영 기자 = 헌법재판관 출신인 안창호 국가인권위원장이...
-
中 대사, 비밀경찰 의혹자 만나는데 간첩법은 또 제동 1
다이빙 신임 주한중국대사가 최근 비밀경찰 의혹을 받는 왕하이쥔(王海軍·왕해군)을...
-
하룻밤 사이에 4
호감 오르비언 탈릅글이 두개나....
-
ㅈㄱㄴ 본인 물2생2 하려는데 국어에만 4시간 영어 1시간 수학 3시간 나머진 과탐...
-
윤혜정 나비효과 문법편 거의 다 끝나가는데 1. 전형태 언매 올인원 2. 떠먹는...
-
오늘은 치과에 가야해요 10
-
왜 전여친이랑 헤어진것보다 더 슬프냐
-
오늘 해야할거 2
브크 3주차 어제 탈주한거 마무리하기 수분감 지수함수/로그함수 마무리하기 노베...
이번주 금요일 날짜의 숫자 맞나요
맞아여 ㅋㅋㅋ
네 정답 ㅋ
앗 중앙모의고사 보는 날인데
유웨이는 26일 아닌가요 ㅋ 이번주는 비상
조아영
공대 공뷰 재밋나영?
네 재밋어여 ㅋㅋ 과는 정말 잘선택한듯 ㅋㅋ 내 적성이랑 딱맞는거 같네요 전기전자쪽이 ㅋㅋ
아...그렇구나..공대에 공학수학? 공업수학? 그런거 있다는데...선형수학? 도 들어밧는뎅.
ㅋㅋㅋㅋ 그건 어느공대를 가도 다 배우는거에요
궁긍한데 p가 1개밖에 안생기는건가요 ??
a,b가 평면에 대해 같은 방향에 있건, 다른 방향에 있건, 무수히 많은 가능성이 있지요. 문제에 원이라 되어 있는데 아마 구일 거에요. 선분ab를 포함하는 임의의 평면 내의 원이라 해도 될 거 같고요. ap=2니까, 직각삼각형abp에서 ab가 최소이려면 각bap가 최소여야 하는데 언제 최소가 될 것인가 묻는 것이지요.
저도 궁금한데 점이 p인데
hp가 3이라는 말이 무슨뜻인가여?
점이 길이를 나타내지는 않는데..
선분 hp요~~
저 3+16=19 나오긴 했는데요.
혹시 저 원과 점 o를 포함하는 평면이 평면x와 수직이 아니고
약간 틀어진? 평면이어도 이 문제답이 19인가여?
이것두 생각해주어야 하는지 궁금해서요 ㅠ
2^2+(2/루트3)^2=(4/루트3)^2
따라서 L^2=16/3
p+q=19 이렇게 나왔어요~
이 문제는 그게 포인트 아닌가요?
맨 밑에 접해있을 때 길이가 3이 되고
틀어지면 길이가 3이 앙대여~~
그래서 맨 밑에서 접해줘야 L값이 최소를 갖겠구나. 그렇게 생각했어요.
구라고 했으면 그렇게 생각하며 고민 함 해볼텐데.. 아예 문제에서 원이라고 되어있어서
첨에 그런 의문이 들었었는데 아예 배제하고 생각했어영~~
틀어지면 길이가 3이 안 되나요?^^ 틀어져도 길이가 3이 되게는 할 수 있는데, 그러면 b의 위치가 a에서 더 멀어져서 최솟값 4/루트3 보다는 커지겠지요.
b를 처음에 딱 정하지 말고, a를 시점으로 하고 문제에 주어진 평면x와 평행한 반직선을 하나 고정하고 b는 그 위에서 움직인다고 칠게요. a를 중심으로 하는 구가 있고요(혹은 다양한 원들), x와 평행하면서 x에서 3만큼 떨어진 평면으로 구를 자르면 반지름 루트3인 원이 단면이 될텐데요, p는 이 단면인 원의 둘레에 존재할 수 있으니 무수히 많이 존재 가능하지요. 이 상황에서 p에서 구에 접하는 평면을 그렸을 때, 좀 전에 생각한 a를 시점으로 하는 반직선과 만나는 점이 b가 될 수 있으니 최소일 때가 4/루트3 인 것일뿐 그 이상의 길이도 가능은 하겠지요.
넵 이해됐네요..
구라고 생각하니까 깔끔해지네요. ㅎ
틀어지면 3이 당연 안됩니다. 왜냐하면 문제에서 원하는 최소값이 나오지 않기 때문에.
굳이 구라고 생각할 필요가 없눈뎅... 난 아예 첨에 원을 구로 잘 못 보고 풀었는데.
결과는 똑같아여~~ 최소값을 가져야하니깐.
출제자의 의도는 알 수 없으나, 원 -> 구로 바꾸면 문제가 훨씬 더 자연스러운 것 같아요. 아마 오기가 아닐까 생각이 드네요. 원이라고 하더라도, 원이 선분ab를 포함하기만 하면 비틀어진 평면이더라도 다 따져주어야지요.
넵 수지님 정답 ㅋㅋㅋ 사실 처음엔 문제를 구로 설정하려고 했는데 한번더 생각하라고 원으로 냈어요 사실 원이 틀어져도 거리가 3인 p는 존재하죠 다만 밑에 평면과 수직일때 거리가 최소인걸 찾는데 포인트 ㅋㅋ
아..난 일부러 원이라고 문제에서 명시한 줄 알았눈뎅~
출제자가 고민하지말고 풀어~~ 이렇게 말하는거 같았어염 ㅋㅋㅋ
아 글쿠나..
두 평면이 수직이라고 하면 문제가 너무 쉬워지고
걍 syzy님 말씀대로 구로 바꾸면 문제가 더 자연스러워질거 같네요~~
구나 원이나 그게 그거임.
원이 틀어져도 hp의 길이가 3이 나오긴 하는데
원이 틀어지지 않고 두 평면이 수직인 경우와 틀어진 두 경우를 모두
고려했을때
점 a와 b사이의 최솟값이 생기는 경우는 두 평면이 수직인 경우이기 때문에
답이 19인거같네요.
만약 출제자가 원이 틀어지는 걸 고려해주길 원해서
문제를 최솟값이 아닌 다른 방향으로 물었다면
이것도 고려해줘야될것 같아요.
아직 이런게 기출에 나온적은 없죠.
원이라고 명시된 것 때문에 수직좌표계로 옮겨서 풀어봤는데, 답은 똑같이 나오네요.
탱구리님 저는 bp길이를 x로 뒀는데요.. 점a에서 X평면에 내린 수선의 발을 a'이라고 하고 b에서 내린 수선의 발을 b' 라고 하면 삼각형 a'hb' 의 세 변의 길이가 루트3, 루트(x^2+4), 루트(x^2-1)이 나와서 이 삼각형에서 삼각형 성립조건..을 써서 무리부등식으로 푸니까 x^2>4/3이 나왔는데.. 원래 성립조건에서 등호는 없지 않나요? 제 풀이가 잘못된 것 같은데..ㅠ ㅠ 왜 잘못된 건지 가르쳐 주세요!! 그리고 각bap가 최소일때? 이건 어떻게 하는 건가요?
그 삼각형 성립조건을 만족한다고 해서, bp가 구에 (혹은 원에) 접한다고 보장할 수 없어서 답이 안 나오는 걸거에요. bp가 구에 접하는 것, 즉, bp와 ap가 수직은 것을 좀더 직접적으로 써야겠지요.
ab의 길이를 t라고 하면, p에서 ab에 내린 수선의 발을 k라고 할 때, ak = 4/t. 이 길이가 a'h보다는 짧아야 하므로 (그림 그려보세요~)
4/t <루트3 --> t > 4/루트3.
끝으로 점b가 점a와 평면x의 반대편에 있을 때도 똑같이 따져보면 이 경우 값이 더 크게 나온다는 것을 알 수 있어서 ab의 최솟값은 4/루트3 이 됩니다.
그리고 위의 경우에 각bap가 최소가 됩니다. (이를 이용해서 풀 수도 있지요.) 그림 그려보시면 확인 가능하겠지만 p가 평면x에서 거리 3떨어지고 반경 루트3인 원 위를 움직이는데 이 중 각bap가 최소인 경우가 언제일지 그림을 통해 확인해보세요.
그리고 엄밀히 따지자면, 원으로 하면 옳은 문제가 아닙니다. 원 -> 구라고 바꿔야 하고요. 혹은 선분ab를 포함하는 임의의 평면 내에 존재하는 원으로 국한시켜야 말이 됩니다. 그렇지 않으면, 점b가 원과 동일 평면 내에 있지 않아서 점b에서 원에 접선을 긋는다는 것이 넌센스가 됩니다.
문제 끝까지 읽어주세요
헐;; 마지막 조건이 점b였는데 점a라고 오타냇엇네요
그점을 고려해서 일부러 저 조건을 준건데 아무도 태클을 안거시길래 몰랏음 ㄷㄷ
예 수정하신 문제는 오류가 없어보입니다ㅎㅎ 오타인 것 같았어요. 점a랑 원은 당연히 동일평면 내에 있는 건데 또 적을 리가 없다 생각하긴 했는데, 그게 점b의 오타였군요..ㅎㅎ